

Exploratory Programming for the Arts and Humanities

Exploratory Programming for the Arts and Humanities

Second Edition

Nick Montfort

The MIT Press
Cambridge, Massachusetts
London, England

© 2021 Nick Montfort

The open access edition of this work was made possible by generous funding from the MIT

Libraries. This work is subject to a Creative Commons CC-BY-NC-SA license.

Subject to such license, all rights are reserved.

This book was set in ITC Stone Serif Std and ITC Stone Sans Std by New Best-set Typesetters Ltd.

Library of Congress Cataloging-in-Publication Data

Names: Montfort, Nick, author.

Title: Exploratory programming for the arts and humanities / Nick Montfort.

Description: Second edition. | Cambridge, Massachusetts : The MIT Press, [2021] | Includes

bibliographical references and index. | Summary: "Exploratory Programming for the Arts

and Humanities offers a course on programming without prerequisites. It covers both the

essentials of computing and the main areas in which computing applies to the arts and

humanities"—Provided by publisher.

Identifiers: LCCN 2019059151 | ISBN 9780262044608 (hardcover)

Subjects: LCSH: Computer programming. | Digital humanities.

Classification: LCC QA76.6 .M664 2021 | DDC 005.1—dc23

LC record available at https://lccn.loc.gov/2019059151

10  9  8  7  6  5  4  3  2  1

https://lccn.loc.gov/2019059151

[Contents]

[List of Figures]    xv

[Acknowledgments]    xvii

[1]	 Introduction    1

[1.1]	 1

[1.2]	 Exploration versus Exploitation    4

[1.3]	 A Justification for Learning to Program?    6

[1.4]	 Creative Computing and Programming as Inquiry    7

[1.5]	 Programming Breakthroughs    8

[1.6]	 Programming Languages Used in This Book    10

[1.7]	 Free Software and No-Cost Software    11

[1.8]	 Programming and Exploring Together    15

[1.9]	 Program as You Go, Testing Yourself    17

[1.10]	 Four Methods to Best Learn with This Book    18

[Method 1]  Read and Study the Text    19

[Method 2]  Type in the Code as You Read, Run It    19

[Method 3]  Do the Exercises    19

[Method 4]  Define, Pursue, and Share Your Free Projects    20

[1.11]	 Essential Concepts    22

[Concept 1-1]  Explore Creative Computing and Inquiry    22

[Concept 1-2]  Programming Is a Practice and Requires Practice    22

[Concept 1-3]  Read, Type in Code, Do the Exercises and Free Projects    22

[2]	 Installation and Setup    23

[2.1]	 23

[2.2]	 Install a Text Editor    23

[2.3]	 Install Anaconda, our Python 3 Distribution    25

[2.4]	 Find the Command Line    27

[2.5]	 Install a Python Library: TextBlob    28

vi	 Contents

[2.6]	 Install Processing    29

[2.7]	 Essential Concepts    30

[Concept 2-1]  Be Prepared    30

[3]	 Modifying a Program    31

[3.1]	 31

[3.2]	 Appropriating a Page    32

[3.3]	 Quick and Easy Modifications    34

[Free Project 3-1]  Modify a Simple Text Machine    36

[3.4]	 Share and Discuss Your Projects    37

[3.5]	 Essential Concepts    38

[Concept 3-1]  Programming Is Editing Text    38

[Concept 3-2]  Code and Data Differ    38

[4]	 Calculating and Using Jupyter Notebook    39

[4.1]	 39

[4.2]	 Calculations    39

[4.3]	 Encountering an Error    43

[4.4]	 Syntax and Semantics    46

[4.5]	 A Curious Counterexample of the Valid and Intentional    48

[4.6]	 Using Jupyter Notebook    49

[4.7]	 Essential Concepts    50

[Concept 4-1]  Arithmetic Expressions Are Snippets of Python    50

[Concept 4-2]  Syntax Errors Help Us Attain Formal Validity    50

[Concept 4-3]  Valid and Intentional Are Different    50

[Concept 4-4]  Always Proceed Downward in Jupyter Notebook    51

[5]	 Double, Double    53

[5.1]	 53

[5.2]	 Type In the Function    54

[5.3]	 Try Out the Function    56

[5.4]	 Describe the Function    59

[Free Project 5-1]  Modifying “Double, Double”    63

[5.5]	 Essential Concepts    64

[Concept 5-1]  Each Function Has an Interface    64

[Concept 5-2]  Code Has Templates    64

[6]	 Programming Fundamentals    65

[6.1]	 65

[6.2]	 A Function Abstracts a Bunch of Code    66

Contents	 vii

[6.3]	 Functions Have Scope    71

[6.4]	 Iteration (Looping) Abstracts along Sequences    74

[6.5]	 Polymorphism Abstracts across Types    79

[6.6]	 Revisiting “Double, Double”    82

[6.7]	 Testing Equality, True and False    84

[6.8]	 The Conditional, if    85

[6.9]	 Division, a Special Error, and Types    88

[Exercise 6-1]  Half of Each    88

[Exercise 6-2]  Exclamation    89

[Exercise 6-3]  Emptiness    89

[Exercise 6-4]  Sum Three    89

[Exercise 6-5]  Ten Times Each    89

[Exercise 6-6]  Positive Numbers    90

[Free Project 6-1]  Further Modifications to “Double, Double”    90

[6.10]	 Essential Concepts    90

[Concept 6-1]  Variables Hold Values    90

[Concept 6-2]  Functions Bundle Code    90

[Concept 6-3]  Functions Have Scope    91

[Concept 6-4]  Iteration Allows Repeated Computation    91

[Concept 6-5]  Types Distinguish Data    91

[Concept 6-6]  Equality Can Be Tested    91

[Concept 6-7]  The Conditional Selects between Options    91

[7]	 Standard Starting Points    93

[7.1]	 93

[7.2]	 Hello World    93

[Exercise 7-1]  Rewrite the Greeting    100

[7.3]	 Temperature Conversion    100

[7.4]	 Lowering Temperature and Raising Errors    103

[7.5]	 Converting a Number to Its Sign    104

[Exercise 7-2]  A Conversion Experience    108

[Exercise 7-3]  Categorical, Imperative    109

[7.6]	 The Factorial    109

[Exercise 7-4]  Negative Factorial Fix    113

[Exercise 7-5]  Factorial Mash-Up    114

[7.7]	 “Double, Double” Again    114

[Free Project 7-1]  Modify “Stochastic Texts”    115

[Free Project 7-2]  Modify and Improve Starter Programs    116

[Free Project 7-3]  Write a Starter Program    116

[Exercise 7-6]  Critique My Starter Programs    116

[7.8]	 Essential Concepts    117

[Concept 7-1]  Computing Is Cultural    117

viii	 Contents

[Concept 7-2]  You Too Can Raise Errors    117

[Concept 7-3]  The Conditional Can Categorize    117

[Concept 7-4]  Iteration and Recursion Can Both Work    118

[8]	 Text I: Strings and Their Slices    119

[8.1]	 119

[8.2]	 Strings, Indexing, Slicing    119

[8.3]	 Selecting a Slice    122

[8.4]	 Counting Double Letters    124

[Exercise 8-1]  A Function to Count Double Letters    128

[8.5]	 Strings and Their Length    128

[8.6]	 Splitting a Text into Words: First Attempt    129

[8.7]	 Working across Strings: Joining, Sorting    131

[8.8]	 Each Word without Joining    133

[Exercise 8-2]  Same Last Character    134

[Exercise 8-3]  Counting Spaces    134

[Exercise 8-4]  Counting Nonspaces    135

[Exercise 8-5]  Determining Initials    135

[Exercise 8-6]  Removing Vowels    135

[Exercise 8-7]  Reduplications    136

[8.9]	 Verifying Palindromes by Reversing    136

[8.10]	 Verifying Palindromes with Iteration and Recursion    140

[8.11]	 Essential Concepts    146

[Concept 8-1]  Strings Can Be Examined and Manipulated    146

[Concept 8-2] � Iterating over Strings, Accepting Strings, and Returning Strings Is

Possible    146

[Concept 8-3]  Reversing, Iterating, and Recursing Are All Effective    146

[9]	 Text II: Regular Expressions    147

[9.1]	 147

[9.2]	 Introducing Regular Expressions    147

[9.3]	 Counting Quotations in a Long Document    149

[9.4]	 Finding the Percentage of Quoted Text    154

[9.5]	 Counting Words with Regular Expressions    158

[9.6]	 Verifying Palindromes—This Time, with Feeling    159

[Exercise 9-1]  Words Exclaimed    161

[Exercise 9-2]  Double-Barreled Words    161

[Exercise 9-3]  Matching within Text    161

[Free Project 9-1]  Phrase Finding    162

[Free Project 9-2]  A Poetry versus Prose Shoot-Out    162

Contents	 ix

[9.7]	 Elements of Regular Expressions    163

[9.7.1]    163

[9.7.2]  Literals    163

[9.7.3]  Character Classes, Special Sequences    164

[9.7.4]  Quantifiers and Repetition    164

[9.7.5]  Grouping Parts of Patterns    165

[9.7.6]  More on Regular Expressions in Python    166

[9.8]	 Essential Concepts    166

[Concept 9-1]  Explore Regular Expressions in an Editor    166

[Concept 9-2]  Patterns Go Far beyond Literals    166

[10]	 Image I: Pixel by Pixel    167

[10.1]	 167

[10.2]	 A New Data Type: Tuples    168

[10.3]	 Generating Very Simple Images    170

[10.4]	 Pixel-by-Pixel Image Analysis and Manipulation    177

[10.5]	 Generalizing to Images of Any Size    181

[Exercise 10-1]  Generalizing redness()    183

[10.6]	 Loading an Image    184

[10.7]	 Lightening and Darkening an Image    185

[10.8]	 Increasing the Contrast of an Image    188

[10.9]	 Flipping an Image    189

[Exercise 10-2]  Flipping along the Other Axis    192

[Free Project 10-1]  Cell-by-Cell Generators    192

[10.10]	 Essential Concepts    192

[Concept 10-1]  Modules Can Be Used in Python    192

[Concept 10-2]  You Can Ask Python Itself for Help    193

[Concept 10-3]  Images are Rectangles of Pixels    193

[Concept 10-4]  Nested Iteration Goes through Every Pixel    193

[Concept 10-5]  Values Can Be Swapped between Variables    193

[11]	 Image II: Pixels and Neighbors    195

[11.1]	 195

[11.2]	 Blurring an Image    195

[11.3]	 Visiting Every Pixel    205

[11.4]	 Inverting Images    206

[Exercise 11-1]  Old-School Filter    207

[11.5]	 Practical Python and ImageMagick Manipulations    208

[11.6]	 Manipulating Many Images    209

[Free Project 11-1]  Image Manipulation as You Like It    211

x	 Contents

[11.7]	 Essential Concepts    212

[Concept 11-1]  Checking the Neighborhood    212

[Concept 11-2]  Working One Step at a Time    212

[Concept 11-3]  Generalizing to Many Files    212

[Concept 11-4]  Customizing beyond What’s Standard    212

[12]	 Statistics, Probability, and Visualization    213

[12.1]	 213

[12.2]	 The Mean in Processing    214

[12.3]	 A First Visualization in Processing    218

[12.4]	 Statistics, Descriptive and Inferential    225

[12.5]	 The Centers and Spread of a Distribution    226

[Exercise 12-1]  Median    226

[Exercise 12-2]  Mode    227

[Exercise 12-3]  Variance and Standard Deviation    228

[12.6]	 The Meaning of the Mean and Other Averages    229

[12.7]	 Gathering and Preparing Data    230

[12.8]	 Probability and Generating Numbers    231

[Free Project 12-1]  Reweight Your Text Generator    233

[12.9]	 Correlations and Causality    234

[12.10]	 More with Statistics, Visualization, and Processing    236

[Free Project 12-2]  An End-to-End Statistical Exploration    237

[12.11]  Essential Concepts    238

[Concept 12-1]  Programming Fundamentals Span Languages    238

[Concept 12-2]  Different Averages Have Different Meanings    238

[Concept 12-3]  Probability and Statistics: Sides of the Same Coin    239

[Concept 12-4]  Visualization Should Be Principled    239

[13]	 Classification    241

[13.1]	 241

[13.2]	 Verse/Prose Text Classification    241

[13.3]	 A Miniature Corpus for Training and Testing    245

[Exercise 13-1]  Train and Test on Ten Books    245

[13.4]	 Building Up the Classification Concept    247

[13.5]	 Text Classification and Sentiment Analysis    248

[13.6]	 Training on Positive Words and Negative Words    249

[13.7]	 A Thought Experiment about Sentiment and Word Order    253

[13.8]	 Using the Included Sentiment System    254

[13.9]	 Approaches to Text Classification    258

[Free Project 13-1]  Your Very Own Text Classifier    259

Contents	 xi

[13.10]	 Trivial Image Classification    259

[Exercise 13-2]  Train and Test on Ten Images    259

[13.12]	 Essential Concepts    260

[Concept 13-1]  Long Texts Can Be Classified    260

[Concept 13-2]  Classification Uses Features    261

[Concept 13-3]  Sentiment in Texts Can Be Classified    261

[Concept 13-4]  Classifiers Are Trained and Tested    261

[Concept 13-5]  Classification Is a Cross-Media Technique    261

[14]	 Image III: Visual Design and Interactivity    263

[14.1]	 263

[14.2]	 Drawing Lines and Shapes on a Sketch    263

[Exercise 14-1]  Draw a Diagonal Line    264

[Exercise 14-2]  Draw Shapes of Decreasing Size    266

[Free Project 14-1]  Recreate Geometric Designs    266

[14.3]	 Updating a Sketch Frame by Frame    267

[Exercise 14-3]  Make a Shape Bounce    269

[14.4]	 Changing Intensity    270

[Exercise 14-4]  Multiple Moving Rectangles with Color    271

[Exercise 14-5]  Fifty Moving Rectangles    271

[14.5]	 Exploring Animation Further    272

[Free Project 14-2]  Parametric Geometric Designs    272

[Free Project 14-3]  Novel Clocks    273

[14.6]	 Interactive Programs    274

[Free Project 14-4]  Conversation Starters    274

[14.7]	 Key Presses in Processing    275

[Free Project 14-5]  Create a Navigable Generated Landscape    277

[14.8]	 Essential Concepts    278

[Concept 14-1]  Abstractions Facilitate Visual Design    278

[Concept 14-2]  Drawing in Time Produces Animation    278

[Concept 14-3]  Interactivity Is Accepting and Responding to Input    279

[Concept 14-4]  A Window Looks onto a Virtual Space    279

[15]	 Text III: Advanced Text Processing    281

[15.1]	 281

[15.2]	 Words and Sentences    282

[15.3]	 Adjective Counting with Part-of-Speech Tagging    284

[15.4]	 Sentence Counting with a Tokenizer    287

[15.5]	 Comparing the Number of Adjectives    287

[15.6]	 Word Lists and Beyond    288

xii	 Contents

[15.7]	 WordNet    292

[Free Project 15-1]  Creative Conflation    295

[15.8]	 Automated Cut-Ups    296

[Free Project 15-2]  Automate Your Own Cut-Up    299

[15.9]	 Simple Grammars for Text Generation    300

[Free Project 15-3]  An Advanced Text Generator    304

[15.10]	 Essential Concepts    304

[Concept 15-1]  Even Words and Sentences Need to Be Defined    304

[Concept 15-2]  Lexical Resources Have Many Uses    305

[Concept 15-3]  More Elaborate Rules Generate Interesting Texts    305

[16]	 Sound, Bytes, and Bits    307

[16.1]	 307

[16.2]	 Introducing Bytebeat    307

[16.3]	 Bytebeat from Zero    309

[16.4]	 Exploring Bytebeat, Bit by Bit    310

[Free Project 16-1]  Bytebeat Songs    313

[16.5]	 Further Exploration of Sound    314

[16.6]	 Essential Concepts    314

[Concept 16-1]  Arithmetic Can Be Done Bitwise    314

[Concept 16-2]  A Stream of Bytes Is a Waveform    314

[Concept 16-3]  Moving a Speaker Produces Sound    314

[17]	 Onward    315

[17.1]	 315

[Appendix A]  Why Program?    319

[A.1]	 319

[A.2]	 How People Benefit from Learning to Program    319

[A.3]	 Cognitively: Programming Helps Us Think    321

[A.3.1]  Modeling Humanistic and Artistic Processes Is a Way of Thinking    322

[A.3.2]  Programming Could Improve Our Thinking Generally    324

[A.4]	 Culturally: Programming Gives Insight into Cultural Systems    325

[A.4.1]  Programming Allows Better Analysis of Cultural Systems    325

[A.4.2]  Programming Enables the Development of Cultural Systems    326

[A.5]	 Socially: Computation Can Help to Build a Better World    327

[A.6]	 Programming Is Creative and Fun    329

[Appendix B]  Contexts for Learning    331

[B.1]	 331

[B.2]	 Semester-Long (Fourteen-Week) Course    333

Contents	 xiii

[B.3]	 Quarter-Long (Ten-Week) Course    333

[B.4]	 One-Day Workshop    334

[B.5]	 Individual and Informal Learning    334

[B.6]	 A Final Suggestion for Everyone    335

[Glossary]    337

[References]    347

[Index]    351

[List of Figures]

[Figure 2-1]  Anaconda Nagivator.    27

[Figure 2-2]  Jupyter Notebook.    28

[Figure 4-1]  The first two code snippets.    40

[Figure 6-1]  A new piece of scratch paper.    73

[Figure 8-1]  The index of the first element of a list is 0.    121

[Figure 8-2]  There are iterative and recursive ways to see if a string is a

palindrome.    144

[Figure 10-1]  Nested iteration is an easy way to visit each pixel in an image.    178

[Figure 11-1]  Interior pixels have eight neighbors.    203

[Figure 13-1]  Training a binary classifier defines a boundary.    248

[Figure 15-1]  Part-of-speech tagging associates tokens with grammatical

categories.    286

[Acknowledgments]

First, my thanks go to everyone who has taught and encouraged exploratory program-

ming, from at least the 1960s through today.

Many people discussed the concept of this book with me at different stages of the

project. Some of these informal conversations were quite important to the final direc-

tion I took with the text—for instance, I learned that senior artists and researchers were

interested in learning programming using a book of this sort. In response, I developed

a book that could be used in a class or by independent learners and tried to improve

both of these aspects of the book in the second edition.

In developing the first edition, I greatly appreciate the opportunity to do daylong

and multiday workshops on exploratory programming in New York (at NYU), in Mexico

City (at UAM-Cuajimalpa), and in the Boston area (at MIT). I also had the opportunity

to teach an undergraduate/graduate course based directly on a late draft of the book in

New York, at the New School, thanks to Anne Balsamo. My New School students were

a great help to me as I worked to complete the first edition. I’ve benefited from many

experiences teaching programming, and also wish to thank my students in semester-

long courses at MIT, the University of Pennsylvania, and the University of Baltimore.

My thanks go to those at the New York City gallery Babycastles, where a good bit of

work on this book was originally done, and particularly to those who helped out there

by reading and commenting on parts of the manuscript as I completed it: Del, Emi,

Frank, Justin, Lauren, Lee, Nitzan, Patrick, Stephanie, and Todd. As I was in the last

stages of work on the first edition, I was able to teach a two-day course based on some

of it for the School for Poetic Computation in New York City. I thank my students and

those who ran the school’s summer session for this opportunity. I have been fortunate

to learn about programming and computing throughout my life in many contexts; an

important one was at Penn, where I was particularly helped by Michael Kearns, Mitch

Marcus, and the researchers at the Institute for Research in Cognitive Science.

xviii	 Acknowledgments

My thanks go to several who reviewed the full text of this book in both of its edi-

tions. Erik Stayton went through the full first edition manuscript, commenting on it

and correcting it, and also completed all the exercises. Patsy Baudoin provided detailed

comments on a full draft of that manuscript. The second edition benefited from the

close attention of Judy Heflin, who reviewed the text closely and also served as my

teaching assistant when I used a draft of this edition. Todd Anderson did a technical

edit of the book to help winnow out many mistakes that remained. My inestimable

spouse, Flourish Klink, read and commented on the book and supported me in very

many other ways as I worked on this project.

As I developed a draft of the second edition and began to refine it, I got to lead a

months-long discussion about the draft book, and an in-person workshop based on it,

with members of the Society for Spoken Art, and I greatly appreciate the opportunity

to refine the book in this creative context. Thank you all, ITs of Full Circle. Thanks, too,

to my students at MIT who were the first to use a full draft of the second edition in a

regular classroom course: Andrea, Casey, Janina, JJ, and Meng Fu.

The conventional wisdom about a new edition of a textbook seems to be that it’s

simply a ploy to milk more money out of students. It would be hard to accuse any-

one of that this time around, because the second edition will be available both in

a print format (which I believe is extremely well-suited to learning, and worth buy-

ing or borrowing from a library) and in a free, digital and screen-based open-access

format. That’s due to the generosity of the MIT Libraries, which offered the financial

support needed to make this edition freely available. Beyond that, the conventional

wisdom is quite off the mark, as anyone who has worked on a substantial textbook

revision like this one will know! I would like to thank everyone who reported errors

in the first edition. I also want to give special thanks to two groups of people whose

use of the first edition helped me get to this point. One is a group of faculty and

staff at Trinity College in Hartford, CT, who undertook extensive study of the book;

thanks to an invitation from Jason B. Jones, I was able to talk with the group and

hear presentations about where their studies had led them. The other people who

helped immensely were instructors who had used the first edition and could report

how it worked (or didn’t) in their particular class contexts. I particularly want to

thank Angela Chang and Zach Whalen for extensive discussions of their teaching

experiences.

The MIT Press of course arranged for anonymous reviewers to consider both the

original proposal and the manuscript closely; I am grateful to these reviewers for their

support of the project and for their valuable comments and suggestions. At the MIT

Press, I also particularly would like to thank Doug Sery, who has discussed, worked

Acknowledgments	 xix

on, and supported my book projects for more than a decade and a half now. I can’t

imagine having explored as many issues in digital media and creative computing, in

the same breath and depth, without his backing over the years. I also appreciate the

work MIT Press editor Kathy Caruso (who worked on three previous books of mine) did

to improve the manuscript and ready the book for publication, in both editions. Any

errors in the published text are of course my responsibility.

The text of appendix A, along with a few paragraphs from the introduction, was also

published in A New Companion to Digital Humanities, edited by Susan Schreibman, Ray

Siemens, and John Unsworth, 98–109 (New York: John Wiley & Sons, 2016), as “Explor-

atory Programming in Digital Humanities Pedagogy and Research.”

[1]  Introduction

[1.1]

This is a book about how to think with computation and how to understand com-

putation as part of culture. Programming is introduced as a way to iteratively design

both artworks and humanities projects, in a process that enables the programmer to

discover, through the process of programming, the ultimate direction that the project

will take. My aim is to explain enough about programming to allow a new programmer

to explore and inquire with computation, and to help such a person go on to learn

more about programming while pursuing projects in the arts and humanities. That is,

when someone finishes going through this book, typing in the code as requested and

doing the exercises and projects as requested, that person will be a programmer—not

particularly an expert, but a person with the ability to use computation in general ways

to explore the arts and humanities. The person who completes the work in this book

may be a beginning programmer but will be equipped to explore areas of intellectual

interest and will be ready to learn more about programming as it becomes necessary.

This book is mainly addressed to people without a programming background—

particularly to both individual, self-directed learners and to graduate students in the

arts and humanities. I developed this book in part for use in university courses, as a

textbook. I also put a lot of effort into developing a book that will be useful outside a

standard classroom and course. I provide suggestions for teaching this book, and for

learning from it in a class, in appendix B, “Contexts for Learning,” which also includes

some suggestions for self-directed students.

To some, programming is associated with expertise, professional status, and esoteric

technical difficulty. I don’t think the term programming needs to be intimidating, any

more than the terms writing or sketching do. These are simply the conventional words

for different activities—creative activities that are also methods for inquiry.

2	 Chapter 1

You don’t need any background in programming to learn from this book, and

courses based on this book do not need to require any such background. If you are

already comfortable programming, you may still benefit from using Exploratory Pro-

gramming for the Arts and Humanities, particularly if your work as a programmer has

been instrumental: that is, you have mainly worked to implement specifications and

solve specific problems rather than using programming to explore. I have assumed,

though, that a reader has no previous programming experience.

In my approach to programming, I seek to show its exploratory potential—its facil-

ity for sketching, brainstorming, and inquiring about important topics. My discussions,

exercises, and explanations of how programming works also include some significant

consideration of how computation and programming are culturally situated. This

means how programming relates to the manipulation of media of different sorts and,

more broadly, to the methods and questions of the arts and humanities.

WARNING! Do not read past this chapter without having your computer next to the book,

if you are lucky enough to have the printed version of this book. If you are using the open

access digital edition, read it, if at all possible, on a separate device that you place next to your

computer.

This book was written and designed to be read alongside a computer, allowing the reader to

program while progressing through the book. The book is really meant to be part of a human-

book-computer system, one that is set up to help the human learn. After reading this introduc-

tory material, I consider it essential to use this book while programming.

I ask at times that readers follow along and simply type code in directly from the

book, in part to gain familiarity and comfort with practical aspects of inputting and

running programs. At other times, readers are asked to try modifying existing pro-

grams, sometimes in minor ways, sometimes in more significant ways. Some carefully

chosen exercises, initially simpler and then more substantial, are provided. In some

of these cases, a specification is given for a program, describing how it is supposed to

work. Although doing such exercises is not an exploratory way to program, they are

included to provide a wider range of programming experiences and foster familiarity

with code and computing. Particularly when learning the fundamentals of program-

ming, such exercises are important. For these reasons, these exercises are not evenly

distributed throughout the book; many of them are provided when fundamentals are

introduced and shortly thereafter.

Finally, throughout the book, “free projects” are described. This term is one I made

up, meant to express that these aren’t the standard sort of exercises or problems. These

are intentionally underspecified projects. The idea is that each free project leaves room

for learners to determine their own directions and to write different sorts of programs.

Introduction	 3

You are free to set your own goals and directions, within a general framework. Most

of these projects should be done several times, as I indicate. In these projects, the

final program is to be arrived at not simply by implementing a fixed specification, but

by undertaking some amount of exploration through programming. Because of the

unusual way I ask that learners use this book, I go through the four main methods of

using the book in detail at the end of this chapter, in 1.8, Programming and Exploring

Together.

In some books and courses on programming, readers learn about different sorting

algorithms and about how these algorithms have different complexities in space and

in time. These are fine topics, and necessary when building a deep foundation for

those who will go on to understand the science of computation very thoroughly. If you

know already that you are seeking understanding and skills equivalent to a bachelor’s

degree in computer science or that you actually wish to pursue such a degree, you

should probably find a more appropriate book or take a course that covers that mate-

rial. Furthermore, if your interest is only in learning how to program, and not in the

use of programming for exploration or in making a connection between computation

and culture, there are good shorter books worth considering. One example I provided

in the first edition is Chris Pine’s Learn to Program, second edition, which uses Ruby to

teach general programming principles. Similarly, if you really don’t wish to learn to

program, but you are interested in how computation relates to issues in the arts and

humanities, there are plenty of books and articles focused on these relationships. One

of them is a book I wrote with nine coauthors, 10 PRINT CHR$(205.5+RND(1)); : GOTO

10, which studies a one-line BASIC program in great depth, considering many of its

cultural contexts.

It’s fair at this point to be clear about what Exploratory Programming for the Arts and

Humanities is not: It is not an attempt to have readers completely understand any one

particular programming language. It is not meant to show people how to professionally

produce products or complete the typical “deliverables” of software engineering. It is,

as stated earlier, not meant to provide a complete first course for those who will con-

tinue to do significant study of computation itself. This book is certainly compatible

with computer science education, but it is an attempt to lay a different foundation, a

foundation for artistic and humanistic inquiry with computing.

This is a book about how to think with computation—specifically, how to think

about questions in the arts and humanities and how to do so by means of program-

ming. I believe this book will supply a solid enough foundation so that those who read

it, and who follow along and do the exercises, will be able to pursue a greater abil-

ity in specific programming languages, learn about essential ways of collaborating on

4	 Chapter 1

software projects, and understand that computation significantly engages with culture

and with intellectual concerns in the arts and humanities. I also hope that working

through this book will reveal the potential of programming as a means of inquiry and

art-making—at least, that it will reveal enough of that potential. As long as it does, read-

ers will likely be eager to continue their programming, and their inquiry, after they are

done with the structure I have offered here.

[1.2]  Exploration versus Exploitation

Exploration as an activity and an outlook is discussed in many contexts; let’s consider

a very everyday way in which people might explore.

On a trip to the grocery store, a shopper may not be interested in locating new pro-

duce that has just started to be distributed locally or other new foodstuffs that have

been introduced. Instead, this shopper may simply exploit existing knowledge about

what already known food is appropriately nourishing, inexpensive, and pleasing to

the taste. Such a shopper would probably be able to remember where such foods are

located within the store, allowing a supply of groceries to be quickly gathered. The

result is efficient, and I admit, I myself almost always shop in this way. But we should

not expect culinary breakthroughs or novelty in diet from a person who only exploits

existing knowledge in this way. A shopper who does not wish to look around even

within a store, and certainly not beyond that store to a new farmer’s market or spe-

cialty shop, will be good at continuing past successes (and failures) and will also have

a harder time discovering new options. This will particularly be the case if the shopper

is not prompted to think of new food choices because of interesting restaurant experi-

ences or by learning about new foods from others.

In organizational behavior, machine learning, and grocery shopping, it is desirable

to balance exploration with exploitation. We can imagine a shopper who does nothing

but explore—who tries new foods at random but never returns to enjoy a particularly

pleasing food again. What is being learned from such exploration? As described, noth-

ing at all is being learned. Not just very little, but nothing: each random selection

is completely independent of the previous ones. One day’s grocery basket could be

improved by remembering some of the best items found so far and selecting those

while also continuing to look for new food. Most grocery-seeking individuals balance

exploration and exploitation in some way, just as successful companies try to profit

from existing, stable lines of business while they also try out new opportunities that

might pay off significantly. A robot finding its way around a changing or partially

known environment should exploit some known ways to get from place to place while

Introduction	 5

also devoting some time to exploration, in the hopes that it can find more efficient

routes.

It’s true that exploration, particularly when paired with exploitation, has some nega-

tive connotations—hinting, for instance, at the history of colonialism. There are some

uncomfortable terms and metaphors in computing, as you will know if you have ever

read the instructions on how to slave a hard drive to the master. I think some of these

terms should be changed, and I find the indifference of some technically oriented

individuals to them to be rather disturbing. I don’t find that exploration packs nearly

as much unambiguous historical negativity as slave, however. In fact, I am offering it

as an alternative to mastery, either of the data or of the computer. The point of this

book is not to train anyone to be a colonizing power, but to invite people to encounter

new ideas and perspectives. The exploration one can do with computing is, to me,

more along the lines of how someone from the United States might visit and explore

Paris or Mexico City and learn about different architectures, cuisines, organizations

of urban spaces, and histories. So perhaps it makes some sense to accuse me of being

touristic, but I don’t think—whatever the ways in which colonialism is wrapped up

with the cities of the world—that my perspective encourages the most negative sense

of exploration.

The idea of exploratory programming is not supposed to provide the single solu-

tion or “one true way” to approach computing; it’s not a suggestion that programmers

never develop a system from an existing specification. It’s meant, instead, to be one

valuable mode in which to think, to encounter computation, and to bring the abilities

of the computer to address one’s important questions—artistic, cultural, or otherwise.

A problem with programming, as it is typically encountered, is that many people

who gain some ability to program hardly learn to explore at all. There are substan-

tial challenges involved in learning how to program and in learning how computing

works. If one is interested in fully understanding basic data structures and gaining the

type of knowledge that a computer science student needs, it can be hard to discover

at the same time, at an early point in one’s programming experience, how to use pro-

gramming as a means of inquiry.

Linked lists and binary trees are essential concepts for those learning the science

of computation, but a great deal of exploration can be done without understanding

these concepts. Those working in artistic and humanistic areas can apply programming

fundamentals to discover how exploration can be done through programming. They

can learn how computing allows for abstraction and generalized calculations. They

can gain comfort with programming, learn to program effectively, and see how to use

programming as a means of inquiry. For those who don’t plan on getting a degree in

6	 Chapter 1

computer science, it can sometimes be difficult to understand the bigger picture, hard

to discern how to usefully work with data and how to gain comfort with programming,

while dealing with the more advanced topics that are covered in introductory program-

ming courses. That is, it can be hard to see the forest for the binary trees.

Beyond that, many of those who haven’t yet learned about programming get the

impression that it is simply a power tool for completing an edifice or a vehicle used to

commute from one point to another. While the computer can have impressive results

when used in such instrumental ways, it can be used for even more impressive purposes

when understood as a sketchpad, sandbox, prototyping kit, telescope, and microscope.

As a system for exploration and inquiry, there really isn’t anything else with the same

capabilities as the computer. Exploratory programming is about using computation in

this way, as an artist and humanist.

[1.3]  A Justification for Learning to Program?

As I wrote this book, I looked at the beginning of several popular books on learning

to play guitar, on learning Spanish, and on introducing artificial intelligence. Interest-

ingly, none of these books seemed to have a section justifying in detail why one should

learn to play guitar, or learn Spanish, or understand the basics of artificial intelligence.

Sometimes there were a few sentences about how cool it is to play the guitar, or some

facts about how many people in the world speak Spanish, or some information about

how interesting AI is as a field, but there was nothing like a pep talk, rallying cry, or

other exhortation to learn the subject matter of the book. At most, these books just

say something like “So you want to learn to play guitar?” or “So you’re ready to learn

Spanish?”

So—you want to learn to program as a means of creativity and inquiry?

I have found many people interested in learning how to program as a way of explor-

ing computation, texts, language more generally, images, sound, historical and spatial

data, and other things. Not everyone feels this way, but when you start looking for such

people, you find that a surprising number do. If you are one of these people, this book

is for you.

For those who actively fear computers and mathematics, I suggest resolving to over-

come this feeling before getting started as a programmer. People who fear reading and

conversation and do not believe they are able to learn a foreign language are really

not well-suited to begin studying Spanish; they should somehow gain at least a will-

ingness to read and talk before they begin a course of study. People who have con-

vinced themselves that they are inherently nonmusical are probably not in the best

Introduction	 7

state of mind to begin learning guitar or piano. They should first be willing to try to

make music.

Not everyone is convinced that programming is an important way of intellectu-

ally exploring in the arts and humanities—even within the area known as the digital

humanities, for instance. Some people see programming as a technical detail, some-

thing peripheral that can be contracted out or outsourced. Or perhaps there’s always an

app for it, so that whatever project one has in mind, it can be done without program-

ming. In this introduction, I discuss some of the roles that exploratory programming

has played in culture and computing, as I work to motivate this particular practice and

approach, but in this part of the book I do not make a full, extensive argument for

programming being a core experience and ability of those in humanities and the arts.

If you meet someone who is unclear on why artists and humanists would program, and

you would like to share some other perspectives on the importance of programming, I

offer appendix A, “Why Program?,” to supplement your discussion.

[1.4]  Creative Computing and Programming as Inquiry

My aim in this book is to help new programmers see the creative potential of the

computer and understand how computation can be used to explore and inquire. My

plan is to provide some insight into how this can be done, to help readers reach a cer-

tain level of comfort with programming, and to show how new programmers can pull

themselves up using these bootstraps and can continue to learn in whatever specific

domains are interesting and compelling.

This book covers ways to develop digital art of various sorts, literary, visual, and

sonic, but one does not have to have a practice as a poet, artist, or musician to work

through these examples. The book also shows how one can undertake several types

of analysis and inquiry with textual and image data and with data of other sorts. To

benefit from working through such examples, though, a programmer does not have

to be strongly focused on the particular media being examined or the specific type of

humanistic perspective taken.

In very general terms, this book covers two types of programming practice. One is

programming to create new types of artworks, very broadly speaking—works in both

revered and popular forms, literary and sound work, and more. This includes creating

games, bots, and many other computer programs that don’t have clear analogues in the

fine arts. I call this area creative computing, a term that I directly ripped off from an influ-

ential magazine, Creative Computing, that was published from 1974 to 1985. To me, this

is a pleasing and appropriately inclusive term. The term also serves as a reminder that

8	 Chapter 1

society was onto something in the late 1970s and early 1980s, when popular access to

computers and programming was increasing and there was a great deal of enthusiasm

for the cultural potential of the computer.

The other practice is one I call programming as inquiry. This is the use of program-

ming to probe data and come up with new ideas. One doesn’t have to have a large

dataset to use programming to inquire. A program without much data can help one

understand how randomness works or offer some understanding of properties of

the Fibonacci sequence. In analyzing corpora of photos, an exploratory researcher

might learn about significant but unnoticed differences in how frequent nighttime

and daytime photography is and whether those who post photos prefer indoor or

outdoor photography. These sorts of higher-level differences might be noticed after

starting with an analysis of lower-level features, such as brightness and contrast. I

think of this use of programming, programming as inquiry, as helping scholars and

researchers explore ideas and determine what more complex projects should be

undertaken.

Now, the truth is that creative computing and programming as inquiry are not actu-

ally two distinct categories. A program developed for humanistic inquiry about data is

itself a creative production, a digital artifact representing a new way of thinking. A pro-

gram to generate texts or to show a visual animation is also an exploration, an inquiry,

into how words fit together and how shape, line, and color work with one another in

motion. You can see examples of this in the work of poet Charles O. Hartman, who

helped develop the system PROSE for analysis of poems, including metrical analysis,

and who used similar techniques and ideas to computationally generate poems, as

seen in his and Hugh Kenner’s book Sentences. His work in programming as inquiry (to

analyze poems) and in creative computing (to generate poems) were two sides of the

same coin (Hartman 1996).

Really, then, my two terms are different names for the same type of activity. The two

terms don’t describe distinct practices, but rather two stances, two different types of

emphasis within the same area of practice. That’s why I think it makes perfect sense to

learn about exploratory programming for both the arts and the humanities.

[1.5]  Programming Breakthroughs

Here’s a selective but worthwhile review of the history of computing, focusing on how

some of the most important breakthroughs weren’t accomplished. Google’s search

engine was not fully planned out by expert nonprogrammers and then implemented

later; Sergey Brin and Larry Page coded it up themselves as they invented it. Tim

Introduction	 9

Berners-Lee didn’t develop the World Wide Web by figuring out all the concepts, apply-

ing for a grant, and then dealing with things like programming later. Joseph Weizen-

baum didn’t just design the first chatbot, Eliza, and then get someone else to do the

programming later. Douglas Engelbart didn’t plan all the major advances of his famous

system, called oNLine System (NLS)—hypertext, videoconferencing, the mouse, and

many others—and then deal with the programming afterwards. Grace Murray Hopper

didn’t come up with the idea of the compiler, and high-level programming languages,

without understanding programming to begin with.

These major advances, not simply technical advances but also ones that were res-

onant with many cultural implications, were not made by treating programming as

instrumental or as a detail to be handled later. These and dozens of other major break-

throughs were made by programmers who used programming to think, doing creative

computing and programming as inquiry. These innovators actually developed their

breakthrough ideas while programming.

Douglas Rushkoff, in his book Program or Be Programmed, notes that while “we see

actual coding as some boring chore, a working-class skill like bricklaying, which may

as well be outsourced to some poor nation while our kids play and even design video

games . . . the programming—the code itself—is the place from which the most sig-

nificant innovations emerge” (Rushkoff 2010, 137). The examples I provided are only

a few of the historically significant cases in which innovation was inseparable from

programming.

The problem with separating high-level digital media design from programming

is that, in many cases, they are inseparable. Even if you do plan to enlist others to

do the heavy lifting of coding, you will somehow have to figure out what to do in

the first place, which requires an understanding of computation, knowing about the

capabilities of the computer in the way that programmers do. An article in Mother Jones

explained this:

The happy truth is, if you get the fundamentals about how computers think, and how humans

can talk to them in a language the machines understand, you can imagine a project that a com-

puter could do, and discuss it in a way that will make sense to an actual programmer. Because

as programmers will tell you, the building part is often not the hardest part: It’s figuring out

what to build. “Unless you can think about the ways computers can solve problems, you can’t

even know how to ask the questions that need to be answered,” says Annette Vee, a University

of Pittsburgh professor who studies the spread of computer science literacy. (Raja 2014)

The book you are reading seeks to enable new programmers to do the type of sketch-

ing, exploration, and iterative development that were done in the influential proj-

ects just listed—and it focuses on humanistic and artistic inquiry. It’s my hope that

10	 Chapter 1

it will help the reader acquire some of the sense for programming, and some of the

willingness to explore, that was exhibited by the people who made these important

breakthroughs.

[1.6]  Programming Languages Used in This Book

Python and Processing are the main languages used in this book, although the first

encounter with programming is via JavaScript—in case you thought that all program-

ming languages had to begin with the letter p. In chapter 16, “Sound, Bytes, and Bits,”

we’ll write not entire programs, but the arithmetic expressions (canonically used in the

C programming language) that are central to a curious and compelling type of sound

generation.

Python is a powerful, standardized, widely used language; I find that it is very good

for exploration and also very suitable for new programmers. With additional modules,

it can be used for image processing, to develop games, to do extensive statistical work,

and for all types of purposes. Without installing anything additional, it can serve very

well for simple text processing and to introduce computing. Guido van Rossum began

developing Python in 1989. Python is actually included in OS X and GNU/Linux distri-

butions, but I ask that everyone using this book install the same standard distribution

of Python 3, Anaconda, which works on OS X, GNU/Linux, and Windows and provides

important and very useful features.

Processing is a language, based on and similar to Java in many ways, that provides

excellent facilities for computational visual art and design. It was created by Ben Fry

and Casey Reas and first released in 2001. Processing (we will use version 3) includes

an elegant, simple integrated development environment (IDE) that makes sketching

with code easy, and was designed with artistic exploration in mind. For those interested

in continuing to explore using Processing, there are several good books and exten-

sive online resources, which appear in the references and are listed, with discussion,

at the end of chapter 9. Processing is available at no cost for GNU/Linux, Mac, and

Windows.

The language commonly known as JavaScript has a very obvious virtue: it can be

incorporated into HTML and can run in practically any Web browser, locally or over

the Web. JavaScript as it existed for many years, in the context of HTML and CSS

on the Web, may be thought of as something of an affliction, attested to by the fact

that JavaScript: The Good Parts is a 172-page book, while JavaScript: The Complete Refer-

ence, Third Edition weighs in at 976 pages. (As an exercise, I invite you to compute the

percentage of JavaScript that is not good.) As recently as a few years ago, producing

Introduction	 11

JavaScript code that worked consistently across browsers required time, effort, and

expertise. Even then, one could quickly understand that there are benefits to using

this language. Understanding and modifying some existing JavaScript programs would

show that they can be very easily shared online. The language, which was released in

1995, is suitable for artistic explorations and for sharing creative projects with others

on the Web. It was developed (originally by Brendan Eich) for use by those who weren’t

computer scientists or professional programmers. Only a text editor and a Web browser

are needed to write and run JavaScript, although the Firefox browser offers a scratch-

pad for writing, running, and editing code along with other facilities. There are online

options for doing similar things, too.

I have to note that when the first edition of this book was published, my feelings

about JavaScript were rather negative—and I think justified! Since then, I have done

more work in a more recent version of JavaScript, officially called ECMAScript 6 (ES6).

This version introduces some pleasing improvements; also, current browsers are pro-

viding much more consistent support for ES6 than has been the case in previous years

and with earlier versions of the language. This means that while a JavaScript program-

mer’s time used to be consumed in dealing with special cases for different browsers,

it’s now possible—assuming you are programming for current-generation browsers—to

spend more of one’s time actually dealing with the core computational issues, explor-

ing and creating. More concretely, it’s great to see some of the particular constructs I

find intuitive in Python, such as looping over every element of a list, implemented in

an intuitive way in ES6.

[1.7]  Free Software and No-Cost Software

In describing what you will be asked to download and set up, I have mentioned that

any software needed to pursue Exploratory Programming for the Arts and Humanities and

not already included with your system is available at no cost. I’ll add to that now:

everything required to follow along in this book is also free software. The distinction

is not obvious, but it’s an important one, particularly for those concerned with the

cultural implications of computing and how computing can be used for inquiry and

creative work.

Some software that doesn’t cost anything, also called freeware, can be downloaded

and used without a financial transaction. Freeware can still be encumbered in various

ways, however. The license that allows use of the software may say that it can only be

used for noncommercial purposes, for instance, or only by students, or only by people

who have signed a loyalty oath, or only by men. Furthermore, you may be given the

12	 Chapter 1

software only in executable form, without source code, making it impossible for you or

anyone else to fix bugs in it, to expand it, or to adapt it to different needs, including

new computers and operating systems.

Because free software comes with access to source code, some people use open source

as a similar term, sometimes as a synonym. I prefer the term free software. The openness

of the source code is not the only freedom in free software. There is also, for instance,

the freedom for anyone to be able to use the software for any purpose, even if they are

not students or have not signed a loyalty oath. In other words, you can be given “open”

source code and still have restrictions placed on how you use it. If you believe that

computation is a way of thinking and that code should be treated in the best ways that

we treat ideas, your real concern is not only with code being open, but with software

freedom.

The term free software was first used in its current sense in 1985 by Richard Stallman,

who had, shortly before, founded the GNU project to develop an operating system that

was to be available as free software. (The G in GNU is pronounced when speaking of the

project, although that’s not the case when naming the animal.) In March 1985, Stall-

man’s “GNU Manifesto” was published, and he founded the Free Software Foundation

(FSF). Of course, many people desired software liberty before 1985, and they acted to

promote it in various ways. And people after 1985 have sometimes wanted the software

they create and use to be free but haven’t explicitly used the term free software. When

people write very small programs or snippets of code, for instance, they often don’t

include a lengthy license or an official declaration, even if they wish their work to be

freely available and freely shared. (I don’t add licenses to very tiny programs that I

write, even though I’m glad for them to be shared, modified, and reused in any way.)

Stallman, in 1985, brought together several useful principles to form the first concept

of free software, one that has continued to evolve and to be refined—although the

principles remain the same.

The FSF’s definition of software freedom at gnu.org/philosophy/free-sw.html.en

includes four points, numbered 0 to 3. (A moment of foreshadowing: As we begin

working with lists and arrays, we’ll see that it is conventional in computing to begin

numbering a sequence with 0. There are reasons that this convention was established

and persists, too, which will be covered later.) The four freedoms are as follows:

[Freedom 0] The freedom to run the program as you wish, for any purpose.

[Freedom 1] The freedom to study how the program works, and change it so it does your com-

puting as you wish. Access to the source code is a precondition for this.

[Freedom 2] The freedom to redistribute copies so you can help others.

http://gnu.org/philosophy/free-sw.html.en

Introduction	 13

[Freedom 3] The freedom to distribute copies of your modified versions to others. By doing

this you can give the whole community a chance to benefit from your changes. Access to

the source code is a precondition for this.

A version of, for instance, some commercial illustration software that is licensed for

educational use only, by full-time students, does not offer any of these freedoms. When

the user of this software finishes school, they are not legally allowed to use the software

to further edit or export illustrations done while in school—denying the student access

to their own creative work. A supposedly “free” app from Apple, Inc.’s App Store, even

if it allows use for any purpose, still lacks freedoms 1, 2, and 3. A user cannot redistrib-

ute copies to a neighbor, family member, or even to himself or herself; it’s a require-

ment that one go to the App Store. If the app disappears from there and the user gets a

new phone, too bad. Also, freedoms 1 and 3 are missing because they rely on access to

source code. For these reasons, it doesn’t make a great deal of sense to me to call such

purportedly free apps “free.” I think of them as currently priced at zero dollars and as

locked down and restricted.

You may hear that the free in free software is free as in free speech, not as in free beer.

That can be helpful to understanding the concept. People also refer to free software as

free/libre/open source, or FLOSS, to emphasize that the relevant sense of free is “libre”

as in freedom, not “gratis” as in given away without cost. Another good way to put it is

that freedoms in software freedom are not really the freedoms of the software itself, but

the freedoms of the people using the software; they are user and programmer freedoms

(Hill 2011).

Many good speeches have been given, and many articles and books have been writ-

ten, about the concept of free software and the virtues of this idea. I will offer just a

brief comment here. When people innovate and develop new ways of using computa-

tion, this can be treated as a contribution to the world of ideas—E = mc2 or the polio

vaccine—or it can be treated like the song “Happy Birthday to You,” the copyright to

which was claimed by Warner/Chappell Music Inc. more than one hundred years after

the song was written. If people view the computer as a way to make money fast, to

reallocate resources from other people to themselves, they will prefer the latter option.

If they believe that computation’s most significant use is in enlarging the human intel-

lect and making the world a better place, it will be more reasonable to establish a

framework of sharing, freedom to use software for any purpose, and allowing people

to build on one another’s successes. No-cost software in general, those programs that

sport price tags of zero dollars, do not inherently embody this idea. This is, however,

the basic concept of free software.

14	 Chapter 1

For more about the free software movement, the interested reader can consult the

GNU site at gnu.org/philosophy/free-software-intro.html. For an extended history

focused on GNU and the development of the Linux kernel, there’s the book For Fun and

Profit: A History of the Free and Open Source Software Revolution (Tozzi 2017). I certainly

advocate for free software and encourage people to read about, and join, the move-

ment. If you are going to start programming using this book, however, I suggest getting

started soon and returning to learn about free software further once you explore as a

programmer for a while. It will mean more to you.

You can follow along in this book using a system of the sort I used to write it—

using entirely free software. That is, you can use a free operating system (such as a

distribution of GNU/Linux; I run Ubuntu, which is based on Debian) and only use pro-

gramming environments and a text editor that are free software applications. It is also

possible to follow along in this book using the major proprietary operating systems,

Mac OS X and Windows. Even the most domineering corporate interests don’t yet pro-

hibit people from programming on desktop and notebook computers or from sharing

their programs with others online. It is possible to write free software using proprietary

software, and, personally, I wouldn’t (and don’t) reject free software that is written in

this way. If one believes in the free software concept, though, it is ideal to use free soft-

ware throughout one’s environment.

Corporate interests do prevent the general-purpose use of many tablets, mobile

phones, and videogame consoles. These computers, by design, cannot compute in

the most general sense. They are made to deliver approved products. They effectively

prohibit users from writing programs on them and then giving those programs away.

Instead, all programs must be sold through a corporate channel and (even if they

are sold for zero dollars) must be approved by corporate authorities. Programs that

don’t fit into the corporate framework and don’t match the corporate idea of a typical

product may not be approved. This is of particular consequence for the noncommer-

cial and noncorporate production—humanistic, artistic, poetic, and related sorts of

production—likely to be undertaken by readers of this book.

Perhaps it’s all right for computing to be made safe for the mall, to be regularized as

commerce. Once this happens, then, we should expect that the art we can access will

be limited to what we can get at the mall: prints from the poster store and factory-made

canvases touched by the Painter of Light. The same can be said for literature and the

humanities: if commerce takes over completely, we can have whatever we want that

is humanistic and literary, as long as it too is inoffensive, the sort of thing that can be

found in the mall.

http://gnu.org/philosophy/free-software-intro.html

Introduction	 15

Again, this topic is worth returning to after some of the power of programming

has been demonstrated. A person who doesn’t program, after all, is not likely to miss

much when using a locked-down computer system that prevents programming. But

the matter of free software versus proprietary software is hardly a technical issue disas-

sociated from culture. It’s an essential issue for society, and certainly for the arts and

humanities, and for all of those who believe computers can be machines for new types

of thought and discovery.

[1.8]  Programming and Exploring Together

First, it’s better for almost everyone to start exploring programming in a group. This

could be a formal classroom, a sort of “book club” of people with similar interests in

programming, a group drawn from an existing online community that meets online,

or just a pair of people. A lengthy argument in favor of social, communal learning can

be found in Yasmin B. Kafai and Quinn Burke’s book Connected Code: Why Children Need

to Learn Programming. Although the argument there is about the way children learn

programming, it’s quite applicable to people in general.

When you work in such a group, you have someone to ask for help, people who can

see your creative work (your free projects), and other people’s projects to admire and

learn from. My suggestion is that you, as a new programmer, do individual work on

exercises and projects and then collaborate in discussion, critique, and appreciation. If

you like, you can also collaboratively rework and remix these projects you undertook

individually. It can be great to work in a group on particular projects, too, but there

is some danger that new programmers may leave the coding to whoever seems more

expert at the time, and this will hinder other people’s learning—and prevent anyone

from learning good methods of collaboration.

Now, I’ve stated that learning in a group is better for almost everyone. Learning in this

way provides generally positive social pressure to progress through the book and offers

a way to see others’ response to one’s free projects. It places programming in the social

world, which is where it indeed actually exists for those who program. Some people

prefer not to have this social pressure and this response from others, however.

I have to consider that people do become better writers and improve the way they

think about their lives by writing diaries, which are written individually and are not

intended for anyone else to read. “There is delight in singing, tho’ none hear / Beside

the singer,” as Walter Savage Landor wrote. So although a social context for program-

ming education can be very important, if working in a group as you first learn to pro-

gram seems intimidating to you, you can still learn to program.

16	 Chapter 1

Whether you are working in a group or not, I must emphasize again that you should

definitely work through this book—all of the rest of the book—with a computer in front

of you. And it should be a computer you are actively using! Typing code from the book

into your programming environment will give you a feel for typing in valid code and

running it and will reassure you that short programs can be entered from scratch and

run. As you work through this book, I suggest you avoid setting aside some fixed, sacro-

sanct time that is the only time when you program or (even worse) going to some sterile

computer lab that you would never otherwise visit and making this the exclusive place

to do your work. Just set up the systems you need on the computer that you regularly

use and make time the way you would for other types of study, practice, and activity.

You don’t need to be online as you work through this book, except to download

software. The Processing reference pages, for instance, are part of the Processing

download—you can access them through the Help > Reference menu item. You also can

access them online, but you have them installed on your system, and you can be sure

that the ones you have installed are the right version. In the Anaconda Navigator, you

can click on the Learning tab on the left and you’ll see plenty of Python documenta-

tion, including Python Reference. This happens to link out to the Web and seems to

always point the latest version of the Python 3 documentation, even if you have an

earlier version of Python 3 installed. This book shows you how to get basic informa-

tion about how Python works within the interpreter we will use, Jupyter Notebook. The

point is, it’s not necessary to be online to learn more about the specifics of Python or

Processing—certainly not to do the exercises. Reading through such reference material

is not even essential for exploration and for doing the free projects.

Thus, if you find it distracting to be online, you might take your notebook computer

to one of the dwindling places in the world where you won’t be online. If you find

yourself on a plane or train without Wi-Fi, or otherwise in an environment in which

you lack Internet access, don’t let that stop you from working through Exploratory Pro-

gramming for the Arts and Humanities.

However, if it isn’t a distraction and net access is available, there are some good rea-

sons to be online. In addition to the Processing reference pages you have on disk and

your ability to find out how Python works, you can also check online documentation.

Once you understand the essential concepts, the documentation for Python and Proc-

essing can help you determine how to accomplish what you conceptually understand

in the specific syntax of the programming language. For Python 3, documentation for

the current version can be installed locally and is also available online at docs.python

.org/3/. The Processing reference, again, gets installed locally with Processing itself, but

also be found online at processing.org/reference/.

https://docs.python.org/3/
https://docs.python.org/3/
https://processing.org/reference/

Introduction	 17

Beyond this, you can check existing forum posts about these languages, and of

course ask questions online yourself, either on forums or in real time. Your real-time

interlocutors might be people in your programming group who are part of a video

conference with you or in a chat room. Even if you have a local group, it can be nice

to be online some of the time, as you can copy and paste code you have written along

with questions you have.

While I always encourage exploration, piecing together snippets of code you find

online—if you don’t comprehend them—will hinder your learning rather than helping

you. Remember that your main goal here is to understand programming as a method

of inquiry and creativity, not simply to hook together a working (but incomprehen-

sible) code contraption. Yes, it’s fine to read what other sources have to say about what

Python and Processing offer and to look at programming examples beyond this book.

Keep in mind, though, that what I introduce in the book is meant to be adequate for

the exercises and free projects. You do not need to troll online for some function I am

keeping secret. And should you locate code elsewhere that you incorporate in your

projects, you need to be sure that you understand everything about how it works.

With very few exceptions, programming in the proverbial “real world” is a social

activity. Back in the day, some game programmers at Atari may have secluded them-

selves for months as they developed cartridges for the VCS (aka the Atari 2600) that

were essentially one-person projects. Even then, these programmers did share code and

ideas. A student working on a dissertation that involves programming might write the

associated code more or less by themselves, but in high-level research meetings and by

consulting with others (online and offline) about lower-level programming issues, even

such an individual project will typically benefit from discussion with others. Those

are some of the most extreme cases of “solo” programming, and even those involve

collaboration. Many academic and creative projects involving programming proceed

collaboratively, and practically all companies incorporate collaborative programming

practices, such as pair programming and code reviews. While we aren’t doing industrial

development, it’s interesting to note an estimate that in industry, “developers spend 30

percent of their time working alone, 50 percent working with one other person, and 20

percent working with two or more people” (Kafai and Burke 2014, 52).

[1.9]  Program as You Go, Testing Yourself

Starting in chapter 3, you will be asked now and then to make a guess about what will

happen at various times. When I ask you to do this, I am not suggesting any classroom

assignments for grading. These are opportunities for personal reflection. They allow

18	 Chapter 1

readers to commit to a particular perspective (or at least to a guess). If you follow

through with this advice and commit to a guess (writing your guess down or typing it

on a virtual sticky note would not be a bad idea), you give yourself the opportunity to

see where your thinking is particularly productive and what is left to be learned.

Instructions on how to set up Python, Processing, and everything else that is used

in this book appear in chapter 2, “Installation and Setup.” I very strongly suggest that

you get everything set up before you start. And if you’re teaching a class in a computer-

equipped classroom, I strongly suggest that you see that everything is installed on these

computers at the beginning of the semester—while also very strongly encouraging stu-

dents to install the required free software on their own machines.

It bears emphasizing: to learn how to program a computer, it is important to actually

do programming. Programming is a practice, like public speaking, playing a musical

instrument, dancing, writing essays or poems, or rock climbing. There’s only so much

that can be done by reading and thinking about it; to really make any sort of progress,

you have to actually undertake the practice and try out the activity. Fortunately, to

program, you don’t have to travel to a special site with climbing routes or find a music

practice room. You just start typing. So if you’re actually interested in becoming a

new programmer, rather than just admiring my prose style, please install the software

required and use it.

You may find it more valuable, particularly as you start to program in an exploratory

way, if you program frequently (every day, perhaps) for a short time each session rather

than having only one longer time each week set aside. Programming is not a physically

strenuous activity, and while it requires some special types of thinking, the kind we are

doing does not require the intense concentration and specialized environment of, say,

surgery. It doesn’t need to be treated as an extraordinary, ritual activity. By the time you

near the end of the book, you may wish to devote longer periods of time and more con-

centration to working on complex projects. But treating programming as overly special,

and as requiring a massive block of time, could end up giving new programmers more

excuses to avoid programming. All of that said, programming does need to be undertaken

often and extensively—it is a practice that needs to be practiced. With that explained, I

will describe the ways I believe it is essential for all learners to make use of this book.

[1.10]  Four Methods to Best Learn with This Book

There are four methods of learning with this book, which, when used together, will

allow you to learn to program, whether you are in a short workshop, a semester-long

class, a small study group, or using the book individually.

Introduction	 19

[Method 1]  Read and Study the Text

This needs no elaboration. It’s just important to emphasize that it is only one of four

things you need to do with the book!

[Method 2]  Type in the Code as You Read, Run It

By following along through the chapters and typing in code, you will get a feel for

programming. You will understand some of what’s involved in writing code, locating

errors, and having an expectation about what will result before you try it out. Hope-

fully this will give you an idea of what the practice of programming is like, in the sense

of a clinical practice, an artistic practice, or perhaps even a spiritual practice.

If you were to just read the book without typing in the code I’ve provided, you will

not get a feel for programming. You will just get a feel for reading a book. You know

how to read books already, so this won’t be useful.

If you are lucky enough to use this book in a classroom context, you will have

another way to get a feel for programming. The instructor can model for you how

programmers sketch and inquire. You can see someone, the instructor, trying out ideas

by programming right in front of you and doing some different things beyond what

the book offers. But whether or not you have that benefit, I want to provide within the

book some idea of what programming is like, at a specific and low level. To do that, I ask

you to type in code as you follow along with my written discussion of programming.

I think it’s very important to get a feel for programming. By itself, however, typing

in code can be boring, because when I ask you to follow explanations and type things

in, you are not doing much independent thinking. You’re not testing yourself to see

if you have learned the fundamentals of programming or of manipulating different

media using code or of analyzing different sorts of data. So a feel for programming is

not enough by itself, and this is only one of four ways this book can help you learn.

[Method 3]  Do the Exercises

There are several more traditional “exercises”—essentially, problems for you to solve—

that are presented in the book, mostly early on when programming fundamentals are

introduced. You should complete all of these before continuing in the book, because a

grasp of the true programming fundamentals is essential. The exercises I have provided

are focused on aspects of programming that everyone who seeks to use computation

needs to know about.

The exercises can be more frustrating than just typing code in because you may not

know what approach to take to solve a particular problem. In these cases, you should

review the previous sections of the book and work to understand what is explained

20	 Chapter 1

there and how analogous problems are solved. The exercises go beyond the previous

discussion in some ways, but they are not meant to be tremendous and difficult chal-

lenges. They are simply opportunities to do a bit of focused thinking so that, in addi-

tion to gaining a feel for programming, you can gain strength.

The exercises have their limitations, because they ask “closed” questions. There’s a

particular problem posed, and you are supposed to solve it. Once you have done that,

that’s it. Fortunately, typing things in and doing the exercises are not the only ways to

use this book to learn.

[Method 4]  Define, Pursue, and Share Your Free Projects

Programming exercises can be found in many books, but in a typical first course in

programming, even if it is for “nonmajors,” it is less typical to let learners define their

own projects. I have introduced free projects as early as I think is possible. I have also

tried to offer, in these projects, frameworks that connect to what we have studied,

along with an openness to the interests of different learners. I believe these free projects

are essential to learning about programming from an arts and humanities perspective.

As I’ve indicated, almost all of the free projects should be done several times by

readers of this book. In a workshop- or seminar-style class, students can select the most

interesting ones to present.

The three main things you can learn from a free project are how to do something

using your programming skills that is tractable, computational, and interesting. A project

has to be tractable—that is, manageable, something you can handle—or it won’t be

possible for you to accomplish it. Most of the free projects have some basic structure to

them but allow latitude in how they are done.

This discussion will hopefully make even more sense after you have learned the fun-

damentals a good bit using Methods 1, 2, and 3. But to be concrete about the tractable,

computational, and interesting at this point, I’ll imagine a final project (or “very free

project”) for a semester-long class, one that is not constrained and builds on everything

learned throughout the semester.

For such a project, you may want to develop a networked multimedia system that

can converse about art history as well as an expert human can. Nice idea, but this is

not a tractable project. Just making a website with some images of visual art and some

writing about visual art could be a fine project for a different context, but it isn’t a

computational project that uses your growing ability as a programmer. Figuring out

some simple statistics of different photographs, represented as JPEG files, may be both

tractable and computational, but because it isn’t very likely to offer insights, it doesn’t

seem very interesting. It is a challenge to find a free project that meets all three of these

Introduction	 21

criteria. If you do develop a project that interests you, is computational, and can be

accomplished, you not only will be developing as a programmer; you’ll also be learning

about how programming and computation is meaningful to you.

To take this example, you might decide that what interests you is the connection

between writing and visual images. If you were doing an analytical (humanistic) pro-

ject, you might try to use some of the text analysis techniques covered in the book

and some of the image-analysis techniques covered in the book, and see, from there, if

you can automatically create text/image juxtapositions that are more interesting than

random ones. You wouldn’t have to end up illustrating a text or writing the caption

for an image in order to match words and images in an interesting way. If you want

to take a generative (artistic) approach, you could start with images and generate texts

based on what you can learn about those images, which might have more to do with

global qualities like brightness and color than with what is represented in the images.

Or, of course, you could do the reverse: start with texts and generate images based on

them. Beyond giving you a feeling for what it’s like to program and helping you build

strength as a programmer, these free projects can reveal why programming matters to you

in particular—why it’s interesting from your perspective. They can also give you experi-

ence figuring out what’s tractable and what really makes use of computation.

For a final project of this sort, you should not only do some sort of a final pre-

sentation, but also find out along the way if your work is interesting to you and if

it resonates with others. Sharing work in class sessions is an ideal way of doing this.

Independent learners face the most difficult challenge when it comes to sharing these

projects and seeking meaningful feedback. Teaming up with others or pairing up with

another person studying this book, even informally, can be a great help in that regard.

While sharing your code and running each other’s projects can be ideal, it’s not the

only way to get useful responses and meaningful critique from others. You can share

outputs from your system and raise questions about how it is working via videoconfer-

ence, by email, on a forum, or on social media.

There are plenty of concepts in each of the chapters that are good and wholesome,

plenty that are useful, and plenty that are interesting. Beyond these, there are some

that I consider essential for making progress as an explorer of computation—that is,

as a programmer who creates and inquires. So while I think it important to know the

difference between free software and no-cost software to be an informed citizen, on

these lists of essentials I am only including those concepts that one really needs to

understand to move on in the book and to become an exploratory programmer, inquir-

ing and creating. If you feel shaky on any of these, it is important to review them and,

to whatever extent it’s possible, to discuss them with others. You should confirm your

22	 Chapter 1

understanding of all of these and be able to express that understanding—in speech

and, in most cases beyond this introduction, in code.

[1.11]  Essential Concepts

[Concept 1-1]  Explore Creative Computing and Inquiry

This describes the motivation of this book and the direction of any learner using it.

Be able to describe what types of programming would be more and what would be

less exploratory. Relate exploratory programming to other programming. Characterize

creative computing and programming as inquiry, giving examples of recent computer

programs you know about.

[Concept 1-2]  Programming Is a Practice and Requires Practice

Understand that learning to program shares important qualities with learning to par-

ticipate in a sport, play a musical instrument, or speak a new language. How regularly

do you plan to practice as a programmer? Where will you program, and will you limit

yourself to only special times and places, which may become inconvenient? How have

you made your programming environment ready for your use? If the computer you

regularly use somehow breaks, will you abandon your attempts to learn programming

or find an alternative way to program? Will you give yourself opportunities to program

or excuses to avoid doing so?

[Concept 1-3]  Read, Type in Code, Do the Exercises and Free Projects

This book offers four interlocking ways to learn about programming as it pertains to

the arts and humanities. Whatever context you are in as a learner, you need to avail

yourself of all four ways—reading the book, typing in the code to see what happens,

getting through all of the exercises with understanding, and framing and completing

the free projects—to develop yourself as a programmer and as someone capable of

thinking artistically and humanistically with computation.

[2]  Installation and Setup

[2.1]

We’ll use a few different programming languages and environments, which means you

will need to install some software. It’s important to get things set up now:

•	 To get an initial sense of computer programs, we’ll work very briefly in JavaScript,

and for this and some future work, a text editor is necessary.

•	 The core work in the next several chapters will be done in Python, specifically

Python 3, using Jupyter Notebook. We will install a particular distribution of Python

3 called Anaconda. We will use one library that is not included with the Anaconda

distribution of Python by default: TextBlob, for text processing. We’ll need to install

that one as well, which will take a few extra steps.

•	 In some of the later chapters, we’ll work in Processing—specifically, Processing 3.

[2.2]  Install a Text Editor

A text editor is a computer program that works on plain, old, classic text files. These files

were in the past typically encoded in American Standard Code for Information Inter-

change (ASCII) and these days are more often in Unicode, which begins with the same

characters but has much more representational power and can better encode written

symbols from around the world. Not only computer programs (scripts, source code) but

also system logs, error reports, README files, and many other sorts of files on a typi-

cal computer are text files. They are basically just sequences of characters. This simple

format is adequate for many purposes.

A word processor, developed for composing memoranda, reports, papers, letters, and

so forth, and capable of various typographical effects, is not the same as a text editor.

Word processors are often actually very poor at editing plain text files, particularly if

24	 Chapter 2

those files are computer programs. By default, they will save data in their own native

format, not as plain text. They also use proportional fonts by default, which are not

desirable for programming. They are set up with models of the English language and

will decorate code with squiggly green and red lines to indicate that code is not gram-

matically proper or correctly spelled according to a standard English dictionary. While

this could point out a spelling error in a string or comment somewhere, it’s generally

not very helpful when programming. You can edit a computer program in a word pro-

cessor, just as you can also drive by turning a car’s steering wheel with one of your feet.

It’s really more effective, however, to use a text editor.

There are many good free software text editors for GNU/Linux, Mac, and Windows,

along with other well-functioning ones that are freeware or are sold commercially. I

use Atom, which is free software and available on all of these three platforms. (When

writing the first edition of this book, I was using Geany, also free software, also cross-

platform.) Feel free to help yourself to Atom (or Geany, for that matter). Some peo-

ple are pleased to use venerable text editors that originated before today’s GUI and

mouse—GNU Emacs and vi being the most famous. Others might value a text editor

that is made specifically for their operating system and follows its interface conven-

tions closely. On the Mac, Brackets is a free software program of this sort. Windows has

a built-in text editor, Notepad, which is quite minimal. Notepad++ is a more capable

free software editor for Windows and better to use.

Ironically, the simple word processor application TextEdit, which is included with

Mac OS X and sure sounds like it should be a text editor, is not set up to edit plain text

files and actually has to be reconfigured to do so. Download a free software or no-cost

text editor, such as Brackets or Atom, instead.

A few setup tasks to make text editing pleasant: You should make sure that if

your text editor automatically indents for you, it does so using spaces, not tabs. (An

extended rationale for this is given at the beginning of chapter 5; for now, understand

that it’s important for everyone to be consistent in indenting in certain programming

languages.) Ideally, you should configure your text editor so that it inserts four spaces

whenever you press the Tab key. In general, you will need to open the settings and find

this option. In Atom, for instance, this is done by first pressing Ctrl-, (hold down the

Ctrl key and press the comma key) or on a Mac, pressing ⌘-, (hold down ⌘ and press

the comma key). Then, select the Editor tab, and change Tab Type to “soft.”

Beyond that, one thing that will particularly enhance your programming is having

the editor display line numbers. Turn that on in preferences, too, if it isn’t enabled

already.

Installation and Setup	 25

[2.3]  Install Anaconda, Our Python 3 Distribution

We will be using Python—specifically, Python 3, the current version of this program-

ming language. Python is an interpreted programming language, so instead of compiling

a program and producing an executable file, a Python program is generally run in an

interpreter. (Strictly speaking, Python code is compiled to an intermediate “bytecode”

form, and the files ending in .pyc that you will see are signs of this.) The important

thing is that as a Python programmer, you don’t have to worry about doing anything

special to compile it yourself. If you were writing code in C, you would compile your

source code to create an executable file, then run the file. To get into technical details

once more, you’d actually also need to link the object file produced by compilation

into an executable as part of that process, but that’s usually done in the same step.

I mention these internal details because computing and programming is full of

them—but I’m not trying to intimidate anyone! People are able to be productive as

programmers—whether they are doing exploratory or instrumental programming—

because of the tremendous amount that is encapsulated. When these sorts of things are

encapsulated, programmers don’t have to constantly worry about them. On the other

hand, I thought it was reasonable to mention the difference between compiling and

interpreting code. Sometimes, because Python is interpreted, people will refer to it as a

scripting language. You can do that if you like, and you could call short Python programs

scripts if you like. Whatever you want to say about Python, it is a full-fledged program-

ming language.

Although Python is quite powerful and industrial-strength, when you write code in

Python, you just need to have your code available as text so that it can be interpreted.

There is no need for a separate compilation step; you can either run that code in an

interactive interpreter (Jupyter Notebook) or put it in a text file and have the inter-

preter read that file in and run the program it contains.

Python interpreters are available for many different platforms, which means that

many Python programs (and all the ones we’ll write here) will work across platforms.

The language is widely used both in programming education and in many different

real-world situations. Much of what manifests itself to you as Google services, Insta-

gram, YouTube, and Reddit is written in Python—not to mention many stand-alone

applications and significant academic research projects. Plus, of course, many instances

of smaller-scale exploratory programming, including development of humanities and

arts projects.

Users of OS X and GNU/Linux will have a version of Python already installed, and

actually they wouldn’t need to download and install anything in order to do some

26	 Chapter 2

work in some version of Python. We won’t use the standard interpreter in our explora-

tions, however, because we want to be sure to all use the same version of Python. Also,

the interface we’re using instead is better for beginners, and possibly for anyone who is

trying things out. This system is Jupyter Notebook.

Jupyter Notebook can be installed in the same way whatever your operating sys-

tem. To install it, you simply download a rather large program that is a distribution of

Python and includes the programming language and Jupyter Notebook. This is Ana-

conda, which is widely used for data science and very appropriate for our purposes, too.

Everyone using this book should install Anaconda. This will cause you no trouble, even

if you have one or more other versions of Python already installed. You don’t need

to (and shouldn’t!) try to remove any existing version of Python. It’s not really a big

deal to have different installations of a programming language on your computer. The

details that follow about Anaconda installation were accurate as this book was being

completed, but specific steps in the installation procedure may change in the future. If

something doesn't seem right, check for recent instructions on the Web.

Download and install Anaconda from the following URL, being sure to select the

Python 3 version:

anaconda.com/download

It’s a large download—and well worth the time and bandwidth.

Choose the installation that is for “Just Me.” During installation, you’ll be asked

if you want to add Anaconda to your PATH environment variable. If you run GNU/

Linux or Mac OS X, check the box. Another checkbox is there to register Anaconda

as your default version of Python 3. You do want this, so make sure this this box is

checked. This will make it easier for you to work with Anaconda as you use this book

and afterward.

After installing Anaconda on your computer—on whatever platform you use—

check to make sure you can start your Python 3 Jupyter Notebook. Use the Anaconda

Navigator to get started; just run it, as you would any other application. Things may

take longer than you expect to start up, but if the installation was done properly, you’ll

get a new tab in your default Web browser (your browser will open if necessary) that

lets you run Python code.

If you’d like an explanation of what’s happening here: Jupyter Notebook does some-

thing rather elaborate, but very worthwhile. It starts a Web server on your computer

and opens a browser to provide access to this local site. You can click on New Notebook

to get a Web page that is also a fully functional Python interpreter. You can save and

restore these notebooks. While it may seem like a rather involved way to go about

http://anaconda.com/download

Installation and Setup	 27

providing access to Python, it is a convenient cross-platform method and even allows

notebooks to be shared with other people across platforms. It provides a more familiar

interface (the browser instead of the terminal window) and lets programmers edit text

in a way that is more standard these days.

[2.4]  Find the Command Line

It’s important to be able to get around your computing environment. I assume that

those coming to this book are familiar with their graphical user interface (GUI) window

manager or file manager and can navigate through their folders and find files by mous-

ing around in GNU/Linux, Mac OS X, or Windows. Jupyter Notebook proves a way to

program, and to edit programs, that is consistent with the GUI. But for some tasks it is

better, or necessary, to use a different, classic computer interface.

Because of this, it’s necessary to have a basic ability to use the command line, the

text-based interface you have to your same computing environment. You’ll need to

access your command line and be able to type in commands for the very next sec-

tion of this book. You will eventually need to know how to move around in the file

system, going through various directories. Directories are actually the same as folders,

by the way. There is just a different command-line name for them. You’ll need to be

[Figure 2-1]
Anaconda Nagivator will let you launch Jupyter Notebook. Click “Lauch” right in the middle

there or wherever you find this option.

28	 Chapter 2

able to view what’s in a directory by listing the contents. And it’s important to be able

to run programs using the command line. Moving through directories, viewing their

contents, and running programs from the command line will be all be part of the work

undertaken in 7.2, Hello World. For now, be able to start your Terminal program (if

running GNU/Linux or Mac OS X) or the Anaconda Prompt (the command line we’ll

use on Windows). On Windows, you can find the Anaconda Prompt as you would any

other application. Clicking Start and typing “Anaconda Prompt” into the search field

is one way to do that.

[2.5]  Install a Python Library: TextBlob

We will use one special library, not included with the Anaconda distribution of Python

3. This is a natural-language processing library, TextBlob. You will have to find the com-

mand line (as we just discussed) to install this software. Although TextBlob is not used

until chapter 13, “Classification,” I find it easier to get all the setup out of the way at

the beginning, rather than saving any potential frustration for later. If you are doing a

short workshop using the book and know you won’t be getting this far into the book

during your current work, however, you can come back to this when you wish to work

with the more advanced chapters.

The easiest way to install TextBlob for use with Jupyter Notebook is using a program

called conda; what you type is the same, regardless of platform. The instructions at

[Figure 2-2]
Jupyter Notebook opens as a tab in your default Web browser. In the upper right, click on “New”

and select “Python 3” to open a specific notebook in which you can work.

Installation and Setup	 29

anaconda.org/conda-forge/textblob explain how to do it. The only difference is that

on GNU/Linux or Mac OS X, you begin by opening a Terminal window; on Windows,

you open a special sort of terminal named Anaconda Prompt. After doing so, type the

following and press Enter:

conda update anaconda

Agree that you do want to complete the update. Then, type this and press Enter:

conda install -c conda-forge textblob

Again, agree that you want to complete this installation.

Finally, open Jupyter Notebook and type the following into the first cell to check

that your installation was truly successful:

 from textblob import TextBlob

You will probably guess that you need to type this exactly, with uppercase and low-

ercase letters as shown. At the end of this line, hold down Shift and press Enter (or,

on a Mac, Return). If the installation went well, something very anticlimactic should

happen: a new cell should appear. This line of code is not supposed to have any vis-

ible result. (If you’re interested in knowing exactly what it does, it makes the TextBlob

object, part of the textblob library, ready for use later on.) If there was a problem with

the installation, you will see a message including the text ModuleNotFoundError. First,

check to make sure you typed the line exactly as shown. Try it again to make sure the

problem is with the installation of TextBlob and not with the way you are testing to see

if the installation worked. If the installation wasn’t successful, close Jupyter Notebook

by clicking on Logout in the upper right and try the installation again, seeking help

online if necessary.

There are also generic installation instructions (not specific to Anaconda) located

at textblob.readthedocs.io/en/dev/. The recommended installation procedure for Text-

Blob (and possibly for other software you are being instructed to install) may also

change as new minor versions are released. You may have to check on the Web for the

current best installation procedure for your operating system.

[2.6]  Install Processing

Downloading and setting up Processing is easy. Just visit processing.org/download,

choose the version of Processing 3 for your operating system, download it, and uncom-

press it. On Mac OS X, you will probably want to place the Processing application in

your Applications folder. On Windows, you can put the Processing folder wherever you

http://anaconda.org/conda-forge/textblob
http://textblob.readthedocs.io/en/dev/
http://processing.org/download

30	 Chapter 2

prefer. You may find it convenient to add a shortcut to Processing on your desktop or to

pin it to the taskbar or Start menu. The GNU/Linux version comes with an installation

script. Processing is free software and the Processing application is a simple and ele-

gant integrated development environment (IDE) in which you can develop programs.

This application isn’t very different from a text editor, but it allows you to do several

Processing-specific things, including running and stopping programs.

Processing is based on Java and is well-understood as a compiled language. However,

you can compile and run programs with a single click. That means the compilation

step doesn’t weigh very heavily on the Processing programmer.

That said, Processing doesn’t have the ability to accept code a single line at a time

and evaluate it, the way a Python interpreter does. This facility is used throughout

much of the book. That’s one of the reasons for doing some work first in Python and

then moving along to try out Processing, a capable (and very friendly) system for devel-

oping interactive sketches.

[2.7]  Essential Concepts

[Concept 2-1]  Be Prepared

It takes some technical preparation, some setup work, to be ready to start program-

ming. Take the time to get the necessary software installed so that as you continue

learning with this book, you can focus on the challenges of programming and comput-

ing instead of needing to complete your setup along the way.

[3]  Modifying a Program

[3.1]

Even though we aren’t trying to learn everything about programming or any specific

programming language, an important approach of this book, used in almost all of the

following chapters, is to build programs up from nothing, to compose them on a blank

slate. There is a focus on fundamentals that allow the reader, the new programmer, to

build up an understanding of programming that has a foundation.

There is another way to gain experience with computation and programming. You

can take an existing program that is somehow interesting to you and start making

changes to it to see what happens. And you should try this way as well, for a few

reasons:

•	 You can deal with more complex forms of computation earlier on.

•	 Some people learn better by referring to an existing program.

•	 Certain things may be easier to learn working in one “direction” and others in the

other.

•	 Modification provides a way to understand something about working with other

people’s code.

•	 This is yet another way of exploring computation, and we should try out any rea-

sonable ones.

While much of the step-by-step instruction in Exploratory Programming for the Arts

and Humanities is designed to introduce computing fundamentals and help readers

develop an understanding of them and build up from them, the free projects in the

book provide space for a different sort of exploration (“Let me see what happens when

I try this, and if it’s interesting . . .”). These projects, a core aspect of the book, invite

programmers to try exploring and to follow their own interests, based on concepts

32	 Chapter 3

that have been introduced (“I’ve thought of a high-level goal and want to see how to

achieve it with programming . . .”).

So, let’s modify a program. To do this, all you need is a Web browser and a text

editor. Your Web browser should be a current-generation browser: I suggest Firefox or

Chromium, the free software version of Chrome, but Chrome, Edge, and Safari should

work as well. Your text editor needs to be a true text editor. On Mac OS X, you can use

Brackets, which is free software, but not the built-in TextEdit, which is more of a light-

weight word processor. See chapter 2, “Installation and Setup,” for further details on

getting a text editor going.

WARNING! Always use a text editor for editing computer programs. Computer programs gen-

erally, and Python programs in particular, are plain text files. They are not word processor

documents, which are stored in different and more elaborate file formats that preserve typo-

graphical and formatting information.

There are specialized environments for programming that combine text editing with

other relevant capabilities. Although programs can be edited with a text editor, such

IDEs, despite the somewhat imposing nomenclature, can be extremely useful and in

some cases can be friendly and easy to use. This book covers how to use the IDE that is

included with Processing. This is a well-designed, simple IDE that was created for use

in the arts and design. A great deal of our programming, though, will be done within

an interpreter. Some programming will be done by editing text files, which can be con-

venient for sharing final programs (and for turning in assignments). These methods

are simple and general, and learning about them helps one explore the possibilities

of programming generally, rather than suggesting a dogged focus on systems that are

specific to a single language or environment.

[3.2]  Appropriating a Page

The first step is to locate a combinatory textual toy in the form of a Web page, several

of which are available on my site. There are others you can locate out in the wild, but

the ones I will suggest here are packed up nicely with all the HTML, CSS, and JavaScript

in a single short file. Here are three simple programs that I wrote and that I can offer

from my lexical toy box:

nickm.com/poems/perverbs.html

nickm.com/poems/upstart.html

nickm.com/poems/lede.html

http://nickm.com/poems/perverbs.html
http://nickm.com/poems/upstart.html
http://nickm.com/poems/lede.html

Modifying a Program	 33

If my quirky approach to text generation doesn’t hold your interest, try these his-

torical programs, creative text generators by others from the early days of computing

that I’ve reimplemented for the Web:

nickm.com/memslam/love_letters.html

nickm.com/memslam/stochastic_texts.html

nickm.com/memslam/a_house_of_dust.html

Theo Lutz’s “Stochastic Texts” is a particularly good starting point, as it is very sim-

ple but (in my view) very well-devised and with some interesting literary engagement.

You can find other historical text generators, similarly presented in self-contained Web

pages, on the Memory Slam site at nickm.com/memslam. All six of the specific Web

pages just listed include computer programs that recombine pieces of text at random,

and you should take a look at all of them running online so you can determine which

is most interesting to you and (at least to some extent) how it works. The Web versions

of these programs are written in JavaScript. They are self-contained, as you can see if

you do the following:

1.	 Go to the page.

2.	 Select Page Source or View Source so that you see the HTML (which includes the

JavaScript). In Firefox, this can be done with Ctrl-U (or on the Mac, ⌘-Option-U),

or you can locate the option in the menu, sometimes under Tools > Web Developer.

All browsers have a similar option.

3.	 Select all, usually done with Ctrl-A (or on the Mac, ⌘-A).

4.	 Copy, usually done with Ctrl-C (or on the Mac, ⌘-C).

5.	 Open your text editor. Paste all of the HTML into the text editor with Ctrl-V (Mac:

⌘-V).

6.	 Save that file to the desktop as mine.html—being sure to give it the .html extension.

If your operating system is configured to conceal file extensions from you, this is a

great time to turn that off so you can see the .html that indicates a Web page and,

later on, the .py that indicates a Python file, not to mention the extensions that

indicate text files and different types of image files. All the GNU/Linux distributions

I know about show the extensions by default. If you use Mac OS X, the option to

show file extensions can be reached by clicking on the desktop to activate the Finder

and then selecting Finder > Preferences > Advanced. On Windows, open the File

Explorer and look at the View tab.

Now, if you open mine.html in a Web browser—you should be able to just double-

click it, but if there’s some issue with that you can drag the icon into a browser

http://nickm.com/memslam/love_letters.html
http://nickm.com/memslam/stochastic_texts.html
http://nickm.com/memslam/a_house_of_dust.html
http://nickm.com/memslam

34	 Chapter 3

window—you’ll see it running. It should be doing the same thing you saw before, but

this time will be running right from your desktop, not from the Web. You don’t even

need a network connection to view this page, having saved it there. Why not prove this

to yourself? Close your browser, take your computer off the network by disabling Wi-Fi

or unplugging the network cable or by some other (nonviolent) means, and then open

the mine.html file again. You can still load the page, because the page is stored locally

rather than being on a remote website.

I recommend this exact process, by the way, because it will work across platforms

and will provide the initial state of the HTML file. It is possible to download a page in

several other ways, but there can be pitfalls in some other cases; this method will work

regardless of your operating system.

If you select a page that isn’t one of the six I specifically suggested, one that you find

out there on the Wild Wild Web, you may end up locating an enjoyable and novel text-

combination system to play with. But there are several problems that could arise. You

may find that there’s no JavaScript code in the page that you downloaded and that the

page won’t work for our purposes in this chapter. Maybe the system you’re looking at is

a JavaScript generator, but the code is stashed in another file instead of being included

in the main HTML page. Or maybe the system you’re looking at uses server-side code

in Perl, Python, or some other language, and you don’t have access to the source code,

only the output. That’s why I have suggested you pick one of the six standard examples

instead.

[3.3]  Quick and Easy Modifications

The fun can now begin. (Although you might want to put your computer back online

so you don’t miss an important cat photo that someone posts.) Open mine.html in

your text editor once more and find some of the strings that are being recombined:

"It's five o'clock." or ['Drop', 'box'] or "sitting on the toilet", if you pick

one of the first three pieces of mine. Or, if you pick one of the others, look for the data

stored in strings (surrounded by quotation marks) such as 'BELOVED', 'DARLING',
'DEAR' or 'COUNT', 'STRANGER', 'LOOK' or 'SAND', 'DUST', 'LEAVES' depending

upon which of those pieces you chose to access. Using your text editor, change those

words or phrases. Write whatever other text you would like, replacing all (or at least

a significant amount) of the text that is there. If you just make a few slight changes,

it may be hard to notice the effect, so make your modifications extensive. Save the

file and view the new version in your browser (by clicking on the Reload button) to

see the result. You probably will want to watch the text being generated for a while

Modifying a Program	 35

to see how the new rules for generation (the rules you developed, by editing text)

now work.

Let’s explore what happens when we modify a program like this—let’s try to do so a

bit more systematically. Take a look at line 65 of “Stochastic Texts”:

subjects = ['COUNT', 'STRANGER', 'LOOK', 'CHURCH', 'CASTLE', 'PICTURE',

If we change the word COUNT to something else:

subjects = ['HAMBURGLAR', 'STRANGER', 'LOOK', 'CHURCH', 'CASTLE', 'PICTURE',

The program still runs. If we look carefully, we can see that we get the word HAM-
BURGLAR appearing once in a while and that the word COUNT—which we replaced—

doesn’t appear at all. That’s not much of a surprise, perhaps. But what if we decided to

change the very beginning of that line instead? For instance, to this:

$#^$&%^#'COUNT', 'STRANGER', 'LOOK', 'CHURCH', 'CASTLE', 'PICTURE',

If we try to run this modified program, we’ll see that we hosed it. The modified

program doesn’t run, and no text appears at all. Some more subtle alternations, such as

removing one of those quotation marks or one of those commas, can also wreak havoc.

But instead of saying “be careful,” I’ll suggest that you be reckless—just very gradually.

Try making one change at a time, viewing the result in a browser, and backing up using

Undo if your alteration breaks the program.

A reasonable way of looking at this is from the perspective of code and data. Some

parts of this text file are instructions indicating that certain types of computing are

to be done. Other parts are, for instance, text strings. If we change one text string to

another, there’s no real problem. If we overwrite some of the instructions, however,

we can mess things up. We almost certainly will, in fact. It’s okay; no one is injured in

the process. By checking to see which modifications are changing data and which are

changing code, you can start to understand what code and data are. We could go on

to make more fine-grained distinctions, but distinguishing between code and data is a

very helpful start.

Feel free to keep messing around with the data you’ve identified, those text strings.

What if you put the same word in several slots? What if you systematically replace a

whole set of words, so that instead of 'COUNT', 'STRANGER', 'LOOK', 'CHURCH',
'CASTLE' (which Theo Lutz took from Franz Kafka’s The Castle) the terms used are

'WHALE', 'SEA', 'MAST', 'HARPOON', 'LEG' and other words prototypical of Her-

man Melville’s Moby-Dick? The results of a modification do not always have to be silly

or funny; they can provide a different type of seemingly endless and disturbing recom-

bination, as with this shift from more institutional repetitions to nautical ones.

36	 Chapter 3

After trying that out, you can see if some ways of changing the code turn out to have

interesting results, rather than just breaking the program. What happens if you change

the number of strings, removing or adding some of them from an array? Can you make

text appear more rapidly or more slowly? Let’s consider how that would be done on

any of the six standard pages.

You can see that new text is being produced about every second or every few sec-

onds (in other words, not as quickly as every millisecond, and not as slowly as every

minute). The rate is probably going to be represented as a number; that is how all of

us tend to measure time. So, find where there is a number in the JavaScript code (not

anywhere else in the HTML, but just in that section beginning with <script>) and

make a dramatic change to that number. Run the program again. Did the rate at which

text is being produced change dramatically? If not, undo your change and find another

number to change. There aren’t very many in the code.

By the way, if you see a number such as 2 in a program, it is quite likely to be a sort

of data as well. Strings are not the only type of data. But this leads to an interesting

thought: What would happen if you changed 2 to 0 and the program, which had been

dividing some result by 2, was now trying to divide by 0? That’s right—you would hose

the program again, this time just by changing data. It’s possible for data changes to

disrupt the working of a program, but programs are generally more robust to arbitrary

changes in data than to arbitrary changes in code, as you can see when you modify the

program you have chosen.

Can you simplify the program (perhaps having it do something different and sim-

pler) by removing parts of it? Can you build up from the simplified version, with refer-

ence to the original, and create your own structures of combination?

Making modifications of this sort doesn’t require understanding how JavaScript

works in any detail or depth. You can change strings around and see the result without

worrying about how the program is accomplishing that. And even removing or adding

strings doesn’t take much background. What if you make a change that breaks some-

thing totally, such as adding a jumbled bunch of characters to the JavaScript? It’s not a

big deal. Just use Undo in your text editor and try again. Or, if you can’t undo enough

to get things working, just start over with the original page.

[Free Project 3-1]  Modify a Simple Text Machine

Do this project three (3) times, using two (2) different Web pages as your starting

point. Start with a particular combinatory textual toy in HTML with JavaScript—a sim-

ple one, although your selection doesn’t have to be one of the six listed previously.

Modify the program so that its output is somehow substantially different. It could

Modifying a Program	 37

contradict the original system, for instance, or the tone could be completely differ-

ent, or the system could produce unrelated output. Beyond replacing some text with

other text, see if you can make changes to the way the system functions. For instance,

if your system generates sentences, can you change the syntax of the sentences

it outputs—adding adjectives or moving parts of speech around—rather than just

changing the lexicon? For this exercise, restrict your work to the JavaScript code (in

the <script> element) rather than modifying the HTML. Modifying HTML can be fun

and rewarding too, but our focus is on programming, not on structured documents or

their appearance.

[3.4]  Share and Discuss Your Projects

As I’ve tried to emphasize, it’s important to do the free projects and to share them—

beginning with this one. In a classroom of any size, each programmer should share his

or her modified text generator. The easiest way to do this is by having programmers

read aloud from their system’s output. Every time that I’ve asked people to do this, I’ve

heard an interesting diversity of outputs that vary in attitude, subject matter, and reg-

ister, among other aspects. Sharing work in this way also shows that everyone has the

ability to create new programs, in this case by modifying existing code.

Programmers who aren’t in a formal class should find opportunities to share their

work with friends, by showing the system to others in person and by putting the page

online somewhere and having people look at it and discuss it online. Of course, it’s

better to share your project with people, online and off, who have some sort of experi-

ence with computational art and literary work, however informal. If your friends are

expecting a video, a meme, or some static text, you may not get useful responses. But

you don’t need to find expert critics to get useful responses. As long as people are open

to the sort of work you’re doing, they can have good ideas and comments.

Ideally, programmers learning with this book should get feedback on at least one

of their attempts at each free project. In a few cases, this may come mainly from an

instructor or teaching assistant because not all classes will accommodate workshop dis-

cussion of all projects throughout the semester. Whenever possible, however, it’s ideal

to share and discuss work as class. For those not in a class, even seeking a few informal

responses can be valuable, as others may point out interesting aspects of a project that

the programmer overlooked.

To be able to look over your own work again as you continue through this book, I

suggest you move the mine.html file off the desktop and into a folder that you have

dedicated to your Exploratory Programming work. You can create folders within that

38	 Chapter 3

folder for each chapter if you like, or use a file naming system, based on the way exer-

cises and free projects are numbered. To share your work with others and facilitate

discussion about it, you have a variety of options. You can simply attach files to email

and send them along, although I recommend compressing a file into a ZIP file because

some email programs will process and mangle HTML attachments and other text files.

You can become part of a community such as codepen.io and use the online editor

there to put a page up for others to view and discuss. You can also place an HTML file

online more permanently, having it hosted so that anyone with access to the Web can

see it. Some free online services exist for this, but because the ones that are up and

running tend to change every few years, I’ll leave you to search for the ones that suit

you best.

[3.5]  Essential Concepts

[Concept 3-1]  Programming Is Editing Text

All you need to do to modify a program—to create a new program based on a previ-

ous one—is edit a text file. Materially, that’s like using a word processor, except even

simpler. Compared to editing video, practicing a martial art, or undertaking tablet

weaving, this is easy. It can done in many different places, using a standard notebook

computer. Programming is just writing a special kind of text.

[Concept 3-2]  Code and Data Differ

Can you distinguish between instructions (code) and particular values (data) in the

program you modified and in another JavaScript program you find and consider? How

could you test your theory that some part of a JavaScript program is data?

[4]  Calculating and Using Jupyter Notebook

[4.1]

Now that we’ve developed a program by starting with a similar one, we’ll see what we

can do to develop some snippets of code from scratch. We’ll start with some very, very

tiny snippets of code that should look quite familiar.

[4.2]  Calculations

Start Jupyter Notebook and click on New in the upper-right corner. Then, under Note-

book, select the Python 3 option. This will open an interpreter, or notebook, for the

Python programming language, right within your Web browser. After you have done

this, just type the following simple expression into the text field (also called a cell) at

the top, the one labeled In []:

2 + 2↵

The ↵ symbol at the end means that you are to press Shift-Enter—that is, hold down

Shift while pressing Enter (or Return on a Mac). This indicates that you’re done with

the whole block of code being typed into the Jupyter Notebook cell. Once you’ve typed

this, you will get the answer that you expect, 4, and a new cell will appear in which

you can type something else. You have just used Python, and Jupyter Notebook, in a

simple way: as a calculator.

Next, type this in the current cell, with Shift-Enter at the end:

17.35 * 1.15↵

The result here is the amount you might pay if you have a $17.35 bill, and if you

think you should tip on the tax that is included in that, and if you wish to tip at a

rate of 15 percent—quite stingy in my part of the United States. You can see from this

40	 Chapter 4

computation that in this situation, leaving a twenty would be suitable. I’m not usually

going to give away what the answers are, but to orient you to Jupyter Notebook, Figure

4-1 shows what it will look like after you’ve typed in these two expressions in the first

two cells.

The cell labeled In [1]: holds the first input. What results from evaluating this

expression appears next and is labeled Out[1]:. The following cell with In [2]: before

it is cell 2, with the input first and the output following it. The cell labeled In []: is

the current cell, which is ready for new input.

The point of these simple computations, getting the computer to do arithmetic for

you, is to show that the types of computing ordinary people do every day can also

be done by a computer. But let’s be even clearer about this: these sorts of arithmetic

expressions are actually valid bits of Python code. It’s not very useful to think of them

as computer programs by themselves, but they can be included in various statements

in a program—in conditions and assignments, for instance. So if you know how to type

“2 + 2”, then you already know how to type some valid Python code.

In the current cell, the one labeled In []:, try an even simpler expression:

2↵

You’ll see that Python knows the answer to this one, too: 2.

The computer is essentially a symbol-manipulating machine. While numbers don’t

have to be the symbols, the computer has historically been understood, in culture, or

[Figure 4-1]
The first two code snippets in the first two cells of a particular notebook, opened in Jupyter

Notebook.

Calculating and Using Jupyter Notebook	 41

at least in English-speaking cultures, as a calculator. Some early computers were even

called calculators rather than computers: the Electronic Delay Storage Automatic Calcu-

lator (EDSAC) and IBM’s Selective Sequence Electronic Calculator (SSEC), for instance.

This primary identification with computing and calculation is not the case in every

culture or language: in French, the standard word for computer, ordinateur, literally

indicates something that orders and organizes. However, calculator and computer have

been recognized as equivalent terms in French as well, and the calculating function is

recognized as a major one in computer-using cultures.

Given this, it’s no surprise that modern programming languages make it easy to

calculate. What is happening when you type 2 + 2 and get 4 or even when you type

2 and get 2? In these cases, you typed an expression, and the interpreter replied with

what the expression evaluated to; it did the arithmetic and provided the number that

is the answer. You should once again type the following:

2+2↵

You’ll see, again, that the expected answer is provided. By the way, you can type this

in exactly as is (without spaces), or you can add in a space on either side of + (as at the

beginning of this chapter), or you can add as many spaces as you desire. From here on

out, I’ll always place single spaces between parts of arithmetic equations for stylistic

reasons, not because it’s necessary in terms of syntax. Style exists in programming

just as it does in writing, not only in terms of how computations are done but also in

terms of how they are written (or typed). This sort of style is related to programming

conventions. The dual nature of programs is important here: Programs are both run by

computers (which couldn’t care less about such stylistic niceties) and also read, modi-

fied, and written by people (who can benefit greatly from good style).

Not everyone agrees about what good programming style is, and some stylistic slips

are widely considered worse than others. You can choose to type a+b or a + b; few

people are likely to complain about the difference. In every case, I’ve tried to follow

good programming style conventions in this book. You should know, though, that just

as there is a house style for particular publications, different companies use and often

enforce different style guidelines for their programmers. This can be the case with other

sorts of collaborative projects, too. Also worth noting is that there are standard style

guides, not just house styles, for many programming languages. In the case of Python,

the standard style guide is PEP 8, discussed further at the beginning of the next chapter.

This guide explains how to format code for human readability, much in the same way

that the MLA Handbook explains a standard format and style for scholarly writing in

the humanities.

42	 Chapter 4

Of course, you can subtract as well in Python—and please do:

5 - 25↵

Division is of course possible in Python, too, and indicated using the / or slash. For that

matter, there are other operators that, for instance, work on Boolean values (True and

False) and work on bytes, treating them as a sequence of eight on or off bits. For the

moment, however, it’s adequate that we use addition, subtraction, multiplication, and

division. That is also enough to let us create more complex arithmetic expressions that

use more than two numbers and more than a single operator as well.

Putting aside the discussion of many other operators and of the expressions that

result from using them may seem unfair. Or the existence of all this complexity may

cause anxiety. But my choice to bracket certain features of a programming language

(and to make a quick mention of them at this point) is not capricious. It reflects a very

basic principle in computing. It is one aspect of abstraction, which can be understood,

in part, as carefully controlled ignorance. Abstraction involves selecting whatever

is of interest and leaving aside that which is unnecessary at the present time. That’s

why in a scientific paper, an abstract can be one paragraph long and can nevertheless

manage to make the main point, while the text that follows it is usually many pages

in length.

When humanists enter a library in search of a particular book, they do not typi-

cally fall to their knees, begin to weep, and shield their eyes from all the books in the

stacks. (I haven’t ever seen this happen, anyway, and I also haven’t done this myself,

even if America’s libraries are full of tears, according to Allen Ginsberg.) “How can I

ever go and select the one book I am interested in,” they don’t say, “without reading

all the books that are here?” No—instead, they simply go past a large number of those

books and locate the particular book that is of interest at that particular point. Then, if

these researchers are anything like me, they read only a part of that book. A researcher

might have taken a look at nearby books on the shelf (as books in libraries have been

meaningfully arranged, or colocated), but the inability to read everything is no obstacle

to research.

There are some things in programming, as in other areas, that it’s worth knowing

about thoroughly. More complex arithmetic expressions are of course among them,

which is why these will be discussed later. But it’s also important to grasp the neces-

sary and fundamental aspects of programming without being overly concerned about

learning everything about a language. An attempt to learn to program by exhaustively

advancing through the workings of every arithmetic operator, and then every Boolean

operator, and then every bitwise operator, and then every Python keyword, and then

Calculating and Using Jupyter Notebook	 43

the interface of every built-in object, and so on, and so on, would be rote, tedious, and

detached from any real purpose.

Any user who performs the simple inputs presented earlier already demonstrates

an ability to do work in Python, to employ the Python interpreter for a useful pur-

pose. Sure, it’s not a highly impressive use of the language, but it nevertheless shows

that the work that can be done in a calculator application, app, or widget can be car-

ried out in Python. In fact, it can be carried out just as easily. Indeed, you can use

Python to compute grades or taxes instead of using a calculator application or an old-

fashioned hardware calculator. I often open a Python interpreter to use it for a quick

calculation.

As for trying to learn every aspect of Python (or of programming more generally),

the approach we will take here is to learn enough to understand the fundamentals

and enough to usefully explore topics that matter to us. Those who develop interest

in specific media or specific aspects of Python will want to develop more ability, and

expertise, as well; what can be learned with the help of this book should provide a good

basis for such further work.

[4.3]  Encountering an Error

We’ve seen that 2 + 2 evaluates to 4 and that 2 evaluates to 2. Now, let’s see what hap-

pens when you type in the following:

2 +↵

A message is emitted, ending with SyntaxError: invalid syntax. Here we witness the

dreaded syntax error. According to some, this error is—gasp!—the bane of the program-

mer’s existence, the most profound fountain of frustration.

Is it, truly? I would suggest instead that the syntax error message is the friend of all

programmers, whether they are novices or deeply experienced. The Python interpreter

in this case simply explains that we do not have a valid line of code or arithmetic

expression: 2 is a valid expression; 2 + 2 is a valid expression, but 2 + doesn’t mean

anything in standard arithmetic. You might associate with it something along the

lines of “two or more” or “two more,” but it does not follow the syntax of arithmetic

expressions. Just as it is not possible to withdraw 2 + dollars from one’s bank account

(whether you go to an ATM or talk to a human bank teller), a computer cannot evaluate

2 + as if it were an arithmetic expression.

The error message here is actually offering assistance to the programmer. It is show-

ing where what seems to be valid Python code ends. Consider this slightly longer text

44	 Chapter 4

that is also not a valid arithmetic expression, along with the message that results,

which will be something like this:

(2 +) * (3 - 1)↵

 File "<ipython-input-7-02f34210bdd2>," line 1

 (2 +) * (3 - 1)

 ^

SyntaxError: invalid syntax

The last line says that there’s a syntax error, that what we typed is invalid. The line

above has just a single character, a caret symbol, in it. It’s being used as an arrow to

point to the first) in the line above. And the line above that, the first line of output,

indicates that what we’re looking at was typed into Jupyter Notebook. Specifically, it’s

from <ipython-input-7-???>. Jupyter Notebook used to be called iPython Notebook,

and that’s essentially why ipython-input appears here. The 7 indicates that this is the

seventh cell or input, which is where you will have been if you input exactly the code

I’ve provided. (It’s fine if you tried out some additional expressions—seeing how divi-

sion worked, for instance.) The ??? is some gobbledygook that really isn’t of relevance

to us; let’s use our abstraction skills to forget about it. After that there’s an indication of

line 1. It’s sort of obvious that the error is on line 1, since we’ve only input a single

line here, but this line number can be quite useful when there is more than one line.

Here we have something that is almost a valid expression. And the error message

points precisely to the problem. Now, it doesn’t say “put a number here!” and in fact

a number isn’t the only valid thing to include at that point. But we at least are shown

where the problem is. If we did insert a number right before the character the caret is

pointing to—for instance, the number 2—we would actually be adding two numbers

together at that point, and the overall expression would be valid:

(2 + 2) * (3 - 1)↵

We had some text before; with a very slight change, a one-character change, we have

an arithmetic expression. The syntax error message pointed directly to the problem.

While problems are not always so clearly indicated by error messages, in most cases

they do indicate the first place in the code where something is amiss. That may not be

every place where an error is present, but it is the first place, and the best place to start.

Consider an attempt to add five and five together and to multiply this by eight

minus one. The way to express this in mathematical notation is (5 + 5) × (8 − 1). We

use an asterisk (*) for our multiplication operation when we’re using a computer. Let’s

Calculating and Using Jupyter Notebook	 45

now see what happens when this is typed in with two syntax errors, the omission of

the second 5 and the 1:

(5 +) * (3 -)↵

 File "<ipython-input-9-787a9fd4bc10>," line 1

 (5 +) * (3 -)

 ^

SyntaxError: invalid syntax

The error message indicates the first place where the expression is not syntactical. It’s

where a 5 has been omitted. When you add a 5 (you need to be typing this in!), there

will be another error message indicating the second problem point:

 File "<ipython-input-10-ec89113804fc>," line 1

 (5 + 5) * (3 -)

 ^

SyntaxError: invalid syntax

This shouldn’t be all that frustrating. A term has been omitted and there is no way for

the computer to know that the number 1 was intended. The best that the computer

can do (specifically, the best that can be done by our Python interpreter, which is Jupy-

ter Notebook) is to point to that gap, that lacuna, to indicate where what looks like

the syntactically valid code ends. Having noticed that, it’s easy for the programmer to

include the missing digit and repair the expression.

It is common for in-development computer programs to have more than one error.

The appropriate way for a programmer to handle this is to determine where the first

error is and fix it. Then, once again, determine where the first error is now located, and

fix it, and so on.

Couldn’t in-process programs have quite a few errors? They could—and there are

two ways of dealing with this.

First, a programmer can avoid writing long programs or long stretches of code without

trying to run (or compile) what has been written so far. Write as little as possible, modu-

larly, and continually check to see that it’s syntactically correct. Expert programmers who

seldom slip up syntactically nevertheless adopt this practice, asking the computer to help

them ensure the validity of their code.

Second, a programmer can understand that discovering syntax errors and repairing

them is just part of the development process, as is writing code to begin with.

46	 Chapter 4

Python’s SyntaxError, and the way the error message indicates where the problem

lies, isn’t some strange feature of this programming language in particular. Any pro-

gramming language will indicate when code can’t be interpreted or can’t compile.

While some languages are better at pointing to the specific part of the line and others

are more cryptic, all of them use error messages to help programmers locate and deal

with invalid code.

[4.4]  Syntax and Semantics

In the previous example, I explained how error messages identified two syntax errors,

one after the other, and how they helped the person developing the expression to

repair them.

However, there is a problem with the valid expression that was developed as a result.

According to my original statement, “Consider an attempt to add five and five together

and to multiply this by eight minus one,” the goal was to compute (5 + 5) × (8 − 1).

What was developed through this process of correcting syntax errors actually com-

puted (5 + 5) × (3 − 1)—and that expression has a 3 where there should be an 8. The

answer, then, is computed to be 20 while it should be 70.

This is an error, obviously, but it isn’t a syntax error. The Python interpreter correctly

accepts that (5 + 5) * (3 - 1) actually is an arithmetic expression, because according

to arithmetic, there’s nothing wrong with subtracting 1 from 3 instead of subtracting it

from 8. This is formally just fine; it’s an arithmetic expression either way. The problem

is not that the expression is invalid; the problem is that it isn’t the right expression. The

error is in the semantics. It is the meaning that is wrong.

Another example: standardized numbers have a particular form. In the United States,

basic postal codes (zip codes) are five digits, while phone numbers have a three-digit

area code followed by a three-digit exchange followed by four more digits. If we assume

that we are within a particular area code, as people used to do, it would be typical to

express a phone number in seven digits. In the movie Taxi Driver, a Secret Service agent

asks Travis Bickle, played by Robert DeNiro, for his zip code. Bickle immediately says,

“610452.” When the Secret Service agent tells him that this is six digits, Bickle says that

he must have been thinking of his phone number. He’s switched from one syntax error

to another, from giving one formally wrong answer to another formally wrong answer.

In this case, the Secret Service agent must be pretty sure that Bickle is just making up a

number, given those syntax errors.

Email addresses also have a syntax, of course, and someone who claimed, either to

a person or a Web page, that their email address had a # in it but no @ would be easily

Calculating and Using Jupyter Notebook	 47

exposed as providing an invalid email. To determine if an email address or phone

number actually functions (whether the phone line is active, whether an email server

is at that domain and has an account of that name) involves further steps. And, beyond

that, additional work is needed to determine if the email address or phone number

actually belongs to the person who has provided them. But the point with regard to

syntax, and to formal validity, is that it’s possible to initially check to see whether the

form of something like an email address is valid; if it isn’t, there’s absolutely no way a

phone number or an email address or whatever else will work.

When developing a computer program, the goal is always twofold: on the one hand,

develop a working program; on the other, have the program work in the intended

way. If the text that has been typed isn’t valid—if there is even one syntactical prob-

lem—then it isn’t going to work. Strictly speaking, one could say that it isn’t even a

program. It’s rather confusing, though, to speak of a file that becomes a program and

ceases to be a program as minor changes are made to it. So, I will refer to valid programs

when I discuss those that will run and use terms such as programs-in-progress if I wish

to specifically include texts that are being edited and that may not be valid programs.

The important point here is that even when a valid program has been developed, this

working program may or may not operate as intended.

Programming in an exploratory mode doesn’t exempt one from having programs

that work as intended (or not). The nature of this proper function certainly may be

different than in a banking or military system that is developed by specification-based

programming. The programmer developing a creative project may be willing to follow

what was apparently a wrong turn, for instance, endorsing what was originally a mis-

take. But if the programmer intended a visual effect and instead developed a valid pro-

gram that drew nothing, simply leaving the screen blank, this would almost certainly

be an unhelpful wrong turn. If a humanist developing an analytical program is not

successfully reading in the data that is supposed to be considered, that too constitutes

an essential problem, resulting in a program that isn’t going to work as intended.

The aim of this book is to empower artists, humanists, and others with the ability

to program and explore. For anyone to do so, it’s important to be able to develop pro-

grams that are both valid and intentional:

Valid programs can be interpreted and/or compiled. They are formally correct.

Intentional programs are always valid, but they have an important additional property:

they do what the programmer or programmers want them to do.

The intentional program is not meant to be a fine philosophical concept. It just

distinguishes a program that needs to be further revised from one that accomplishes

48	 Chapter 4

the current goal. After developing an intentional program, a programmer may certainly

choose to set new goals and continue development; this would indeed be typical in

exploratory programming.

[4.5]  A Curious Counterexample of the Valid and Intentional

As presented, formal validity and working according to intention should seem rea-

sonably clear-cut. The way they have been portrayed so far is generally accurate with

regard to programming, and certainly for programming in Python. When these con-

cepts get into the wild, worldwide context of other forms of coding, however, what

results is not as easy to classify.

HTML (Hypertext Markup Language), a way of structuring linked documents, is an

excellent case in which formal validity and intentional functioning are both meaning-

ful concepts but work differently. Whereas a JavaScript program is a program, a page

of HTML, by itself, is not. HTML does not encode instructions for computation, which

is why it is called a markup language rather than a programming language. Like a phone

number or email address, however, HTML can be valid or invalid.

A Web browser is supposed to be liberal and allow much more to be rendered than

is actually syntactically correct. For instance, by definition a link cannot run across two

different paragraphs in HTML. The valid way to mark up a page that is supposed to

present a link of this sort is to create one link running to the end of the first paragraph

and another link (to the same URL) beginning at the start of the next paragraph. That

said, browsers are designed to be forgiving, or liberal, and will render an invalid page

whenever it’s possible to formulate some output, even when this is based on a loose

interpretation of HTML.

On the other hand, one is supposed to be conservative in writing and posting HTML.

Although browsers are forgiving, the creators of Web pages are supposed to write clean,

valid HTML. That’s a nice idea. But millions of people write HTML or cause it to be gen-

erated; only a few write widely used Web browsers. Those millions of people want to get

their Web pages up quickly. As a result of these and other factors, one is hard pressed to

find examples of valid HTML on the Web.

The rule that motivates this “liberal” and “conservative” behavior predates the Web,

but certainly applies to it. Jonathan Bruce Postel, in one of the canonical “Request

for Comments” documents specifying the behavior of the Internet (RFC 760), estab-

lished what has come to be called Postel’s law. In this 1980 document, he wrote that

“an implementation should be conservative in its sending behavior, and liberal in its

Calculating and Using Jupyter Notebook	 49

receiving behavior.” Later, in RFC 1122, this was rephrased as “be liberal in what you

accept, and conservative in what you send.”

When a Web developer is interested in HTML that will be readable years or even

decades from now, on whatever browsers might exist in the future, it is sensible to con-

sider the validity of the markup used. The World Wide Web Consortium offers a vali-

dator for HTML at validator.w3c.org, and there are many good stand-alone validation

tools as well. Perhaps it seems that there is little practical need for such validity checks,

particularly when working under deadline to pop pages out of the hopper. After all, it’s

easy to view a page in a browser and see whether it looks right. The problem with this

reasoning is that a browser is forgiving. Other existing browsers may not be forgiving

in the same ways, and future browsers on whatever is to follow mobile phones and

tablets may not be forgiving the same ways, either. Because of this, a validator is great

for learning HTML in the first place and for developing hand-coded Web pages that are

robust and archival. If we were covering markup in addition to programming in this

book, I would send you to the validator to get the same sort of helpful responses that

Python’s syntax errors offer.

Given the unusual way in which Web browsers and HTML work, it’s possible to have

an intentional Web page, one that opens up in a particular browser and is structured in

the way it is supposed to be, which is at the same time not a valid Web page. Of course,

if an author follows Postel’s law, they will validate all Web pages created, being con-

servative about what is sent out on the Web server. But on the Web, validity is just an

option. When you are programming, validity is a requirement.

If you haven’t worked with HTML, this should offer a glimpse of how the Web works

and its (somewhat odd) relationship to validity and intentionality. If you have written

and edited HTML, I hope this explains one important way in which writing HTML

and programming in Python and other languages is different. Although it’s possible to

develop an invalid document that is “good enough” for current browsers, an invalid

Python or Processing program won’t work. Formal correctness is essential. Fortunately,

it’s not impossible or even difficult to attain valid code, with the right mindset and the

help of the interpreter and its error messages.

[4.6]  Using Jupyter Notebook

You now have a general sense of how Jupyter Notebook works because you have typed

some arithmetic expressions into it, seen them evaluated, and seen errors produced

when invalid expressions were typed in.

http://validator.w3c.org

50	 Chapter 4

Jupyter Notebook is, like a notebook, a good space for sketching, making notes,

and trying out ideas. Unless used properly, however, it can obscure what code you

have run and (as you will soon see) what values have been assigned to what variables.

That’s because you can overwrite the contents of a Jupyter Notebook cell with some-

thing entirely different from what you placed in that cell before. This can be deeply

confusing.

There is a simple way to avoid this problem, but it requires attention and discipline

on the programmer’s part.

As you use Jupyter Notebook, don’t ever replace the contents of a cell once it has

successfully run. If there’s an error in certain code, it’s fine to edit the code in that cell

and fix the error. Once a cell has run, however, you need to move down to the next cell

and start working in that one. Otherwise you will lose the trail of computation, which

can be perplexing for anyone, but particularly for those new to programming.

I suggested at the end of the last chapter that you make a folder for your work with

this book, which should have your mine.html file in it. You can also give your Juypter

Notebook a specific name using File > Rename (if you don’t choose one, it will be called

Untitled.ipynb) and move that notebook to wherever you like. I suggest keeping these

files organized by date and/or chapter within your Exploratory Programming folder so

that you can easily look back at what you’ve done.

[4.7]  Essential Concepts

[Concept 4-1]  Arithmetic Expressions Are Snippets of Python

Understand that expressions such as 2 + 2 can be evaluated by a Python interpreter

because they are valid bits of code that can be usefully incorporated into programs. Be

able to write ordinary arithmetic expressions, using parentheses to be clear and when

necessary. Simply put, be able to use Jupyter Notebook as a calculator.

[Concept 4-2]  Syntax Errors Help Us Attain Formal Validity

Be able to explain what a syntax error is and some basic ways in which an error message

can help a programmer fix nonworking code. How can an error indicate which specific

part of a program-in-progress has a problem? What will happen if there is more than

one problem?

[Concept 4-3]  Valid and Intentional Are Different

Explain the difference between a phone number, arithmetic expression, or other piece

of code that is valid and one that is, as described in this chapter, intentional. Can you

Calculating and Using Jupyter Notebook	 51

have an intentional Python program that isn’t valid? Can an email address be valid but

not intentional? Can a Web page be intentional but not valid?

[Concept 4-4]  Always Proceed Downward in Jupyter Notebook

Instead of replacing successfully run code with other code and overwriting the con-

tents of Jupyter Notebook cells, keep moving to the next cell as you compute. This will

leave a clear record of what computation has been done so far in your session.

[5]  Double, Double

[5.1]

A program that prints “Hello World” is a traditional first computer program. In chap-

ter 7, “Standard Starting Points,” I discuss this category of introductory programs,

“Hello World” itself, and a few other starter programs of this sort, explaining what

they have to show us about computing and culture. For now, I offer a code snippet

called “Double, Double” as our first program to be typed in and used. (To be precise,

it’s not a complete program, but is our first function, one that we can use within Jupy-

ter Notebook to produce a result.) Artists and humanists may appreciate that “Dou-

ble, Double” is a reference to the weird sisters in Macbeth, although I can’t claim that

I’m particularly special because I made a cultural reference in my program. Even the

venerable “Hello World” could be seen as a reference to Miranda’s exclamation “O

brave new world” in The Tempest. If you don’t buy that one, consider that the source

code from the Apollo Guidance Computer’s software has routines that programmer

Don Eyles referred to using the names of characters from Hamlet, Rosencrantz and

Guildenstern (Dobson and Mosteirin 2019). Many computer programs found “in the

wild” make different historical, literary, and film references, among other sorts of ref-

erences. Computer programs are cultural artifacts, so why shouldn’t they make such

references?

The meanings of even a simple phrase can be complex, too. Perhaps the name of

this program will particularly resound for Canadian readers, since “Double, Double”

also is a request for a coffee with two sugars and two creams at Tim Hortons. Or it may

please readers in the vicinity of an In-N-Out Burger, where among the nonsecret menu

options they can find the Double-Double.

54	 Chapter 5

[5.2]  Type In the Function

The following Python code defines a function double(). You need nothing except a

Python interpreter to type it in and see it work. So, just open Jupyter Notebook and

type this directly into the first cell:

def double(sequence):

 result = []

 for element in sequence:

 result = result + [element * 2]

 return result↵

After you type the first line in Jupyter Notebook and press Enter, you’ll see that the next

line is magically indented for you. (It’s not really magic, but rather the result of typing

a colon at the end of that first line.) Keep that indentation as it is; don’t add or remove

any space. After you type the third line, you’ll see that there is more indentation pro-

vided. Keep that indentation just as it is and continue by typing r and then the rest

of that line. When you press Enter at the end of that line, you’ll see that there is more

indentation than you need. Backspace once to move back a level. (In Jupyter Notebook,

the automatic indentation is four spaces, pressing Tab gets you four spaces of indenta-

tion, and removing indentation with Backspace takes away four spaces.) Then, type

the last line and press Shift-Enter to complete this snippet of code. You’ll just get a new

cell—no value results, as it does when you type in an arithmetic expression. But you

will have defined a function.

At first, we’ll focus on exploring what double() does and how to use it, rather than

detailing how this code actually works. Don’t worry; we’ll get to all of those details

later, in chapter 6, “Programming Fundamentals.” For now, though, it’s worth men-

tioning that function definitions like this one are made using a particular sort of tem-

plate. The way to define functions is formulaic, at least in its overall framework. A

function definition will always look like this:

def ____(____):

The first blank contains the function name, which can be almost anything—it shouldn’t

be a Python keyword such as def (those words are reserved for special uses), but can be

anything ranging from double to mean to illuminate to asdfpurq. Of course, some of

these names are likely to be more clear than others, but understand for now that the

Double, Double	 55

choice of a function name is up to the programmer. It isn’t a particular required word,

as def is.

The second blank contains zero or more arguments. Functions don’t have to have an

argument at all, and may have more than one. We’ll see what those cases look like soon

enough. In the current case, double() takes one argument, which is labeled sequence;

that’s the name of this argument.

Because the parentheses are conceptually attached to the function name, it’s proper

to write double() instead of double (), and it’s proper to always attach that left paren-

thesis to the function name when defining the function and when calling it. In this

book, function names are always shown this way, and in any well-written code they

will be. Remember that you’re not making some sort of optional, parenthetical com-

ment after typing double; you should place the left parenthesis directly after the word.

Even if your code happens to work with a space before the left parenthesis, it isn’t sty-

listically correct to have space there and it could be confusing.

The third blank, which might represent more than one line of code, is the function

body—whatever code is executed when this function is called. In the present example,

the function body is four lines long.

After their names, functions always have parentheses when they are defined and

when they are called, and if they require one or more arguments something will be in

those parentheses. At the end of the first line of a function definition, there must be

a colon to meet the syntactical requirements, to abide by the formulaic way in which

functions are declared. But the rest is up to the programmer.

Indentation is not decorative in Python. It is meaningful—part of the syntax. Inden-

tation indicates special blocks of code, including function definitions and code that

runs within loops. After the first line of double(), beginning with def, the code is

indented, and after the next line, beginning with for, it is indented again. If you were

typing this function in a text editor, you would need to add that indentation yourself.

The way to do it is with four spaces—not two, three, or any other number of spaces,

and certainly not (gasp!) a tab. If you copy the code snippet you just entered from Jupy-

ter Notebook and paste it into a text editor, you can see that the indentation you were

automatically provided consists of four spaces (for the second line) and eight spaces

(for the last).

As you work through the exercises in this book, don’t ever add a tab character into

Python code (or any other code). If you are using your text editor and have it set up so

that pressing Tab adds four spaces, fine, press the Tab key to indent; just don’t add the

tab character itself. Now, in Python you are officially (by the language itself) allowed to

use either type of indentation, tabs or spaces, and the consistent use of either will result

56	 Chapter 5

in programs that are valid and work. Mixing tabs and spaces, however, causes par-

ticular headaches for programmers as it creates errors that are literally invisible. When

trying to collaborate and combine code written by different people, the problem is

worsened. The issue of which type of indentation should be used can be a heated one,

even though PEP 8—Style Guide for Python Code, coauthored by the creator of Python in

2001, holds that “for new projects, spaces-only are strongly recommended over tabs.”

Ultimately, this matter is similar to the question of whether to drive on the right side

or the left side of the road. Either side is fine, but what really matters is that everyone

agrees on one and sticks to it. In the country of Exploratory Programming for the Arts and

Humanities, we will drive on the “spaces” side of the road, which is also where Jupyter

Notebook drives and where Guido van Rossum, the creator of Python, suggests we stay.

The spaces versus tabs issue illustrates that there are some standards and norms

determined by convention, not by changing the workings of a programming language

to enforce that only one way is possible. Either way is syntactically correct, but pro-

grammers do well to use a consistent style and stick to a particular way. If they don’t,

they risk confusing and inconveniencing themselves. Writing double () instead of

double() is a stylistic mistake of a certain sort, but mixing spaces and tabs is a stylistic

mistake that is likely to have consequences for getting a program working and main-

taining it. The consequences are clearest in Python, where indentation is essential to

the workings of programs. But there’s also no reason to use tabs in any other programs

in languages discussed in this book—Processing or JavaScript.

[5.3]  Try Out the Function

After you type in “Double, Double,” you will be able to use this function and see what

it does. Specifically, you will now call or invoke the function by giving it a sequence

as an argument. One type of sequence in Python is a list, which can look like this: [1,
10, 5]. That particular list is one with three elements, the first one 1, the second one

10, and the last one 5. The numbers are arbitrary; I’m just providing these so that you

and everyone else using this book will try out double() in the same way at first. I’ve

started with small, positive integers (numbers without decimal points) that you will be

able to double in your head so that you can check to see what the function is doing. To

invoke the double() function on that list, just type:

double([1, 10, 5])↵

If everything was typed in as shown here, the answer that comes back—the values that

the function returns, which are displayed in the interpreter—should be shown in a

Double, Double	 57

similar format. To deter those who are trying to read this book without using a com-

puter and typing things in, I’m not including the output. I will usually omit the output.

You will need to type in the double() function and then type in the line provided to

see what results. After you do, try this and a few other lists of numbers:

double([-42, 0, 42])↵

Negative numbers and zero should be doubled just like positive ones. Try a longer

list with four, five, or ten numbers in it. You can also check to see what happens if a

sequence has only one element. Will the code still work?

double([24])↵

No problem. What if the list has no elements? Try typing the following line in—but this

time, wait before you press Shift-Enter:

double([])

Take note: I omitted the Shift-Enter symbol—↵—from the preceding line to indicate

that you should not press that key combination yet. I’m asking you to imagine what

will happen before you see what happens. What do you expect? Will the program

crash? If so, what sort of error will it generate? If not, what will be displayed? Formulate

a hypothesis of some sort, commit to it, and after you have done so, press Shift-Enter:

↵

Interesting . . . perhaps? There are the brackets that are typical of a list, but with noth-

ing between them, as with the argument that was passed in. Like the sound of zero

trees falling in the forest, this result is the empty list—the list of zero elements.

Now, what if we don’t give the double() function a list at all? What if we remove

the list entirely from between the parentheses? Again, without pressing Shift-Enter at

the end, type:

double()

What do you expect to happen this time? Will the program crash? If so, what sort of

error will it generate? If not, what value will it return? Whatever your guess, be sure to

have a guess of some sort.

↵

People can only operate computers because they have some mental model of how

they operate. If we type 2 + 2 into some system designed for calculation, we usually

expect to get 4. If we got 11 instead, we would probably be puzzled. This result could

actually be a correct answer in a very unusual circumstance: using a base 3, or ternary,

58	 Chapter 5

number system, the answer to 2 + 2 is 11. To figure out what’s going on in this unusual

circumstance, a person would have to understand something about arithmetic in dif-

ferent bases—binary and hexadecimal being more common ones in computing. That

obviously requires additional mathematical knowledge.

But consider a person who truly has no expectation at all of what is going to happen

upon entering 2 + 2—no idea at all. The computer might as well output 17, or display

the message “Hello, world,” or play Rick Astley’s music video “Never Gonna Give You

Up.” If any result seems equally likely, it will not only be impossible to solve somewhat

sophisticated puzzles such as discovering the workings of a ternary calculator; it will

also be impossible to understand when the computer is doing basic arithmetic, in our

ordinary decimal system, and can be used in a straightforward way. Similarly, if we

imagine that 4 is always the result of typing anything in or that 4 is a way of displaying

the time or that 4 is just a random digit that appears, the system would be as inscru-

table to us as a book written in an alphabet we have never seen.

Only because we expect that entering 2 + 2 will result in 4 can we make and test a

hypothesis about the system: this is a system for doing arithmetic. We are able to put

together three things: our knowledge of arithmetic, our expectation that the system

will do arithmetic, and our experience with the system.

Whether you’re undertaking early explorations of computing to learn about pro-

gramming or using computing to explore questions of importance to you, it is extremely

helpful, when you are working to develop a program, to have some sort of expectation

about what will happen when you invoke a function or run a program. This doesn’t

mean that you always need to know every answer in advance. If you did, why bother

using a computer?

But for instance, if you try adding 961907 and 560166, assuming that you are doing

integer arithmetic, you should in most cases expect that you will get a number in

return. It should be an integer, a number without a decimal point. It should be positive;

something’s wrong if you tried to add two positive numbers and got a negative result.

And if you want to develop a more detailed expectation, you might expect that the

number will have seven digits in it, with the first digit being 1, because the first number

is almost one million and the second number is a bit less than six hundred thousand.

When you see “1522073,” you will be able to do some quick checks, such as these,

to make sure things are working properly. If you saw, for instance, “961907560166”

instead, you’ll know that something is amiss.

To digress for a moment about what might have happened in that “961907560166”

case: what seems to be amiss in this case is that 961907 and 560166 are being added

as strings, not as integers, in the same way that 'work' + 'shop' is 'workshop'. The

Double, Double	 59

existence of different types for data, such as string and integer, will be covered in the

next chapter, and string addition of this sort will also be discussed. For now, the impor-

tant observation is that even an approximate expectation can be of real help when trou-

bleshooting and can allow one to identify when there is a problem in the first place.

If you truly have no expectation about what will happen, your expectation can

never be violated and you can never be surprised. This means that you will not be able

to tell if your program-in-progress is working properly, if it is indeed doing the useful

things that you intended, or if it’s doing something else entirely. It also means you

won’t be able to learn!

Because of the need for such expectations, I ask that you continually take a guess

about what is going to happen before you press Shift-Enter. In some cases, the answer

may be pretty obvious. Okay, then; take the chance to very quickly confirm that you

understand some of the fundamentals of computation. In other cases, you really need

a computer to figure out the complete result and aren’t going to quickly come up with

it yourself. Still, you should have some idea about the result—for instance, will the

program crash, with some sort of error produced? Will the result be a list of values or a

single value? If a single value, will it be larger or smaller than the last result, or will it

be the same?

[5.4]  Describe the Function

Right now, describe what you believe double() does—not precisely how it works inter-

nally, but what it does from the perspective you have, your perspective from having

called this function a few times, from invoking it on some arguments. Actually write

(or type) a statement expressing your current understanding of this function. You can

do that right in Jupyter Notebook; there are two simple methods for doing so. The first

is just to type # to indicate a comment and then type your statement in the current

cell. Alternatively, you can go to the menu and select Cell > Cell Type > Markdown to

convert the current cell into one in which you can write text instead of Python code.

Then you don’t need to include that # at the beginning.

You should write something down or type something out so you can figure out what

you are able to describe precisely and what is more difficult to express. Don’t proceed

until you have committed to some description of this function.

Here is my answer. The operation of double() can be described as follows: “This

function takes exactly one sequence as an argument and returns a sequence in which

each of the original elements are doubled.” I’ve tried to choose my words carefully,

according to the rather precise terminology of programming and Python. I don’t expect

60	 Chapter 5

that a new programmer would come up with exactly the same terms, but this is how I

characterize the function.

My description is a more formal way of saying something like “double() goes

through each element in a sequence and doubles it,” which also gets at the basic idea.

The more formal way, however, includes some detail that is important. Having started

to think about computation seriously, we need to be discerning about how compu-

tation works. It will be very important to see that double() doesn’t modify the data

(which is a sequence) that it is given as an argument. After calling double(x), the vari-

able x is unchanged. Although we will cover variables in values in more detail in the

next chapter, see for yourself by assigning a sequence to the variable x and then calling

double(x):

x = [1, 2, 3]↵

double(x)↵

Now, check to see what the current value of x is:

x↵

You can see that it didn’t change. The informal description, however, suggests that

the argument to double() does change. The formal description that I gave first is more

precise about this.

As mentioned, I haven’t actually explained what a variable is, but by trying the

previous lines out in Jupyter Notebook, you’ve gotten at least a little bit of practical

experience with the concept. More about variables soon.

Did you make this distinction properly in your written definition of the function,

explaining that the original data isn’t modified? There is no reason you should have

known to do so. I would be surprised if a reader who was truly new to programming

had done this. What about the language you used to describe a sequence, each ele-

ment, and how a sequence is returned? These are also fairly tricky, but all of that should

be clear by the end of the next chapter. Hopefully you did correctly indicate that the

result has “double” each value or twice the value of each element, or that multiplica-

tion by two was involved, or, somehow, that an operation of this sort was being done.

Did you choose a way of describing this that is clear? Would you revise that part of

your description at this point? If so, go ahead and revise it. Really—write down a new,

revised description of the function, ideally typing it right into your Jupyter Notebook.

To begin, it can be helpful to simply understand a function as a bundle of computa-

tion. After learning more about how computation works, functions can be more clearly

distinguished from other things that are also involved with computation. This function

Double, Double	 61

“takes . . . an argument,” which means that it must be provided some data—not zero

pieces of data, and not more than one piece of data, but exactly one argument. We saw

already that if we give zero pieces of data (nothing at all between the parentheses of the

function), the result is an error. If we provide one sequence, or list (of however many

elements), the function seems to work. The single argument that double() accepts is a

sequence, which can itself have no elements, one element, or more than one element.

In general, functions return values as well as accepting arguments, and we’ll see that

in all of the following chapters. In Jupyter Notebook, whatever values are returned by

a function are shown to you when you invoke that function. If you place this code in

a text file (we will see how to do this later, in 7.2, Hello World) and run this text file

as a Python program from the command line, you will need to print out the result,

rather than only having a function that returns a value. Otherwise, the result won’t be

displayed.

The formal description I offered previously is really all a person would need to carry

out this computation manually and is all a programmer would need to implement this

function, whether in Python or another language.

The description explains why typing in double([]) succeeds and why it returns [].

In this case, the function is given a sequence. Yes, the sequence is empty, but it is still

a sequence, just as 0 is still a number. What the function returns—a list that is just as

empty—is appropriate. There were no elements in this sequence given, so there was

nothing to double. The function, then, did its work trivially; it did nothing. Another

way of saying this is “all the elements in the list were doubled—all zero of them!”

Why, then, does double() fail? The error message explains it:

TypeError: double() missing 1 required positional argument: 'sequence'

We don’t have to get into any details of what a TypeError is, right now, to see the

problem: double() expects an argument—as our more formal description says, it is

missing one required positional argument—and it didn’t get one. We can multiply by

zero if we want, as in 15 * 0. But we can’t just multiply a number without providing

a second number, by doing something like 15 *. Recall that 2 + wasn’t a syntactically

valid expression. When we write a function to work on lists, it’s no problem to double

the empty list. But it is a problem not to be given a list at all.

We could modify this function, if we wanted, to accept no arguments and return

nothing, without producing an error. The error message we see isn’t some kind of limi-

tation of the Python programming language. It simply follows from how this code is

written. As things stand, double() correctly implements the more formal description

of the function. double() “takes exactly one sequence as an argument” according to

62	 Chapter 5

that description. So if we give it anything else—no arguments, more than one argu-

ment, or an argument that isn’t a sequence—we shouldn’t expect it to work. Try giv-

ing double() a number such as 5 all by itself, not surrounded by brackets and thus

not part of a list. After you have developed an expectation of what will happen, press

Shift-Enter.

Now, see what happens if you give double() two lists as arguments. For instance,

you can use the lists [1, 2] and [3, 4]. To hand both of these lists to a function as

arguments, you need to place a comma between them. Try to invoke double() on

those two lists based on this description of how to do it—and remember that according

to the description of this function, you should expect an error to result. Then, proceed

to the next paragraph.

If you wish to pass more than one argument to a function, you can do that by

putting several values, separated by commas, in between the function’s parenthesis.

double([1, 2, 3]) will double one list, the list [1, 2, 3]. On the other hand,

double([1, 2], [3, 4]) is an attempt to double two lists. Did you come up with

that second formulation based on the earlier description? There are several subtleties

in play already: lists bundle together several pieces of data, and functions can take no

arguments, one argument, or multiple arguments. The function, as written, only takes

one argument and won’t work with two lists. However, notice that if you give both [1,
2] and [3, 4] as arguments, the resulting error message no longer includes (0 given).

The error message does explain what’s wrong with that attempt to invoke double().

We’ll see how a function that takes multiple arguments works before too long, but

hopefully trying out these variations will at least explain why it’s important to get

parentheses and brackets right. They do indicate different things and are definitely not

just decorative.

Without even discussing how double() works internally, we’ve gone through a great

deal about how it can be used. We now know quite a bit about the interface to double().

Specifically, this function accepts a single argument, and that argument can be a list,

such as a list of integers, such as [1, 2, 3].

Fortunately, no programmer has to write all the code in the world. Programmers

can use code that is built-in, code in standard modules, and code provided by others,

including people they are collaborating with. Knowing how an interface works empow-

ers a programmer to use other code, including other functions, even if the programmer

doesn’t write that code or examine that code to learn how it works.

In the remainder of this book, we’ll talk more about double() as a way to learn

more about programming. The discussion of double() will continue, and the function

will be explained entirely and in detail in the next chapter. This quick discussion, with

the opportunity for the reader to follow along, is meant to show that it’s possible to

Double, Double	 63

do some interesting, if very brief, programming within a Python interpreter. An inter-

preter (Jupyter Notebook, in our case) can be a good environment for figuring out how

Python works. It’s also meant to lay the groundwork for understanding how computer

programs generalize our ability to calculate, allowing us to unfold new capabilities

along several dimensions.

As we near the end of this chapter: the end of a chapter is one great point (although

perhaps not the only point) at which you should be sure the specific Jupyter Notebook

session that you’ve been using has been given an informative name, for reference.

Jupyter Notebook does save your session along the way, but there’s no harm in clicking

on that floppy disk icon before you log out. If you start Jupyter Notebook in the same

directory (i.e., the same folder), you should be able to easily return to your earlier, saved

sessions. Or, if you like, you can move the .ipynb file around and open it by starting in

whatever directory you have placed it in.

You should be careful about closing and opening Jupyter Notebook files, however.

Unless you have pressed Shift-Enter in a particular cell of your Jupyter Notebook, that

code hasn’t run, despite the fact that you ran it previously. So if you save your work

from this session and open it up again, and then go to the last cell at the bottom, you’ll

find that double() is not defined. If you want to run only the cell where you defined

double(), you will need to go to that cell and press Shift-Enter. If you want to rerun

everything you did, you can go to the Cell menu and select the Run All option.

[Free Project 5-1]  Modifying “Double, Double”

Do this project at least two (2) times, developing different modifications. In the next

chapter, there will be exercises that ask you to modify double() in various ways. But

without looking ahead to those, figure out some simple but somehow interesting mod-

ifications you can make to double() right now. For instance, a simple modification

would be creating a new function that prints out triple the value of each number in a

list. See if you can do this and if you can think of some other modification beyond that

to make, and see if you can implement those. Your changes do not have to be exten-

sive, but they should still reflect good programming practices as you understand them

so far. For instance, if you change double() so that it prints out triple the value of each

element, shouldn’t you change the name of the function, too? You don’t have to in

order to develop a properly working function, but if you left the name as double(), it

would be rather confusing. With the freedom to choose any function name comes the

responsibility to choose one that is clear and helpful, not only to others but also to the

original programmer who might return to the code months or years later.

Some might protest that this project is being assigned too soon. After all, the dis-

cussion of double() has been almost entirely about its interface—how to use it. The

64	 Chapter 5

only other discussion was about how there is a standard sort of template for function

definition. Nothing has been said, so far, about how the code inside the function actu-

ally works.

However, in the previous free project, modifying a HTML/JavaScript text generator,

there was even less said about the code we were changing. Whatever code you modified

was code you selected. Use this opportunity to explore the code in an ad hoc way, mak-

ing some changes and seeing what results. The method of free modification (done in

small steps) works for figuring out JavaScript and can work in Python, too. Give it a try.

Part of the point of double() is that it iterates over a sequence. So as you change

the function, don’t remove the loop that it uses to go through every element in the

sequence.

The only other thing to add is that you should keep it simple. Don’t elaborate your

new function very much, and definitely don’t exceed ten lines. You’re not getting paid

by the word here. You want to be able to clearly understand how small differences have

an effect and how a little bit of additional computation changes the operation of this

function.

[5.5]  Essential Concepts

[Concept 5-1]  Each Function Has an Interface

Computers don’t just offer user interfaces; functions have interfaces, too. In general,

they accept arguments and return values, and the specific way in which they do this

defines the interface to a function. Be sure you know what an argument is and what

it means for a function to return a value. Here is a crucial question you should be able

to answer: Can one understand and use an interface of this sort without knowing how

the function works internally?

[Concept 5-2]  Code Has Templates

We saw an example of a very standard structure for writing code and abstracted from

that the template for defining a function: a function definition always begins with the

same keyword, uses parentheses on that first line, has a first line that ends with a colon,

and so on. Without looking back at the book, can you write or type it out, with the

three blanks or slots, as it was described? If not, review this template before proceeding.

Be sure to understand that the indentation is no less important than the punctuation,

which is just as important as the three-letter keyword!

[6]  Programming Fundamentals

[6.1]

At this point, I’ll describe several types of abstraction. After initial encounters with

abstract art, some people have the impression that abstraction is about being nonfigu-

rative or nonrepresentational or making work that doesn’t look like the world. Actu-

ally, whether it’s an abstract painting or the abstract to a scientific paper that one is

looking at, abstraction is often better understood as capturing the essence of something

while not getting bogged down in details.

When writing a program, you may find that in different places and in different

contexts, you are doing essentially the same computation ten times. For instance, you

might need to take a string that contains a first name, a last name (perhaps a com-

pound one), and possibly one or more middle names, and break it into its component

parts. You might need to do this with an email contact over here and with a few other

names over there. The first relevant type of abstraction allows the programmer to create

one function that bundles code together and expresses this essential computation; that

function can then be used ten times—or however many times.

You also may find that you have a regular sequence of data to deal with, such that

each data point you wish to process should be treated the same way. For instance, you

have a bunch of subtotals for services provided and need to compute the tax on them,

each in the same way. In this case, instead of (or in addition to) writing a function to

deal with a particular number or another single piece of data, a programmer can write a

program that goes through a list of this data. That is, iteration can be used to generalize

a computation over a sequence.

A programmer can also write code that applies to data of different types, so that

some code that checks to see if two numbers are equal can be used for people’s names

(represented as strings) as well. This type of abstraction is called polymorphism. And

66	 Chapter 6

while it isn’t as standard to learn early on about this type of abstraction, it is certainly

essential for a new programmer to understand types and how they help to represent

data, along with what sorts of computations can be performed across types and what

sorts cannot. Types and polymorphism are closely related.

By considering functions, iteration, and polymorphism/types, we’ll begin to see why

programming languages, even though they can be used as calculators, are much more

than just calculators. These concepts and one other fundamental (the conditional) pro-

vide programmers with significant capabilities for working with computation. Through

discussing these aspects of abstraction, we’ll see how programming can help people get

to the essence of important problems and questions—not just in business and science,

but also in the arts and humanities.

[6.2]  A Function Abstracts a Bunch of Code

Having mentioned that you could use Python to do your taxes, let’s take a quick plunge

into world of commerce and taxation, however shallow this world may seem to some

artists and humanists. It’s very helpful to begin with a concise problem that is some-

how grounded in the world. With apologies to those who don’t care about the culture

of New York City, we’ll figure out how much city and state tax there would be for

$1,500 of surveillance services provided by a private investigator, working there.

Are gumshoe services taxed in the Big Apple? Yes, they are. The fourth category of

goods and services subject to New York State Sales and Use Tax is “detective, cleaning,

and maintenance services.” And the New York City Finance website, in particular the

page www1.nyc.gov/site/finance/taxes/business-nys-sales-tax.page, explains that for

this and other items, in 2015, “The City Sales Tax rate is 4.5%, NY State Sales and Use

Tax is 4% and the Metropolitan Commuter Transportation District surcharge of 0.375%

[results in] a total Sales and Use Tax of 8.875 percent.”

The people behind that Web page do this for a living, but let’s use Python to check

their math and make sure that 8.875 percent is really the right tax rate:

4 + 4.5 + 0.375↵

If we’ve typed this in correctly, we’ll see that New York City Finance doesn’t have its

thumb on the scale—the number it gives is consistent with its explanation of the tax—

and also we’ll see that we can use more than two operands (in this case, with + between

them) to add three numbers together. By the way, you don’t actually have to type the

leading zero in 0.375; just typing .375 will do the same thing. I include leading zeros

because I think it makes things clearer for people reading the code.

http://www1.nyc.gov/site/finance/taxes/business-nys-sales-tax.page

Programming Fundamentals	 67

Now, let’s consider how we would figure out a percentage (one percent) of some-

thing. There are several possible ways, but let’s simply move the decimal point over

to the left two places. Moving the decimal place over in 5 by one place gives us 0.5;

moving it two gives us 0.05, which is indeed one percent of five. So, we convert 8.875

to 0.08875.

The goal now is to multiply our dollar amount, $1,500, by the number we multiply

by to get 8.875 percent, which is 0.08875:

1500 * 0.08875↵

Let’s see what the tax would be on a shorter or simpler job for which only $995.50 is

billed:

995.50 * 0.08875↵

Without doing exhaustive testing, it’s easy to do a quick reality check and see that the

number computed looks right. It’s slightly less than $88.75, which would be the right

tax amount for $1,000. (Isn’t it? From simple movement of the decimal point?) This

tax rate is about 9 percent, so for $100 it should be just less than $9—and that checks

out. So it seems that we can use Python (functioning as a calculator) with the number

0.08875 to find out the appropriate tax rate for an arbitrary amount.

However, even with a simple computation like this one, if we were going to do it

again and again, it would be a good idea to bundle it up so that we don’t have to type

in this number every time tax is computed. We will probably also have other things

to compute—the cost of a set of prints of incriminating photographs, a surcharge for

digging through the trash, and so on. And the tax rate will change once in a while,

so even if we do eventually learn to flawlessly type “0.08875”, we may find it hard to

adjust when a new rate is set.

So, again simply using the Python interpreter, let’s define a very simple way to com-

pute the tax at this 8.875 percent rate:

def tax(subtotal):

 return subtotal * 0.08875↵

As with the function double(), this follows the template for a function definition.

Also, recall that the four spaces at the beginning of the second line, which will be auto-

matically inserted for you in Jupyter Notebook, should stay right there. In some other

programming languages, indentation is optional, simply for human legibility, and a

matter of style and convention. Python, remember, uses indentation to indicate spe-

cial code blocks and to determine when function definitions, conditional statements,

68	 Chapter 6

and other constructs start and end. It’s part of the syntax, as important as using the

word def. In the first line, def indicates a function, just as it did when we defined the

double() function earlier. Our function in this case is called tax() and, as with every

function, the name is immediately followed by a list of arguments in parentheses. In

this case, there is just one argument, subtotal. There don’t have to be any arguments,

but in all cases, the parentheses are needed. They are part of the template for defining

a function. Finally, the line ends in a colon to indicate that there is a special block of

code, the body of the function, indented underneath it.

In this case, the special block is only one line long. It contains the keyword return

to indicate how to provide the answer—what value the function should send back

when it is called or invoked. Let me mention at this point what a keyword is. It’s a spe-

cial word that is part of a programming language and is reserved so that it can only be

used in particular, formal ways within the language. Many of our choices of what to

name things, such as functions, are pretty much free choices. We can call a function

double() or tax() if we like, or phoebe() or helicopter(). But we can’t call a func-

tion return() because return is a keyword, reserved for a special purpose. Don’t trust

me on this; try it out. Type in the tax() function exactly as it appears previously, but

call it return() rather than tax(), and see what happens when you press Shift-Enter.

There are not a huge number of keywords that we’ll be bumping into accidentally, so

while it’s good to know what keywords are, we need not be overly concerned about this

limitation on naming things.

Back to the matter at hand, calling a function. When we’re talking about the use of

a function within our code, we would usually refer to such a use as “calling the func-

tion” or as “invoking the function,” depending upon whether we’re feeling telephonic

or magical. “Calling” is used often; it just means sending a function some arguments

so that the code within the function is executed and a result is returned. The value

provided by tax() here is that of the expression subtotal * 0.08875. More on what

subtotal means in a bit; for now, let’s see how the function works by making use of it

(calling it).

Notice that the following line does not have an ↵ at the end. Type it in and don’t

press Shift-Enter:

tax(1500)

What do you expect this line to do? It’s an invocation of the function tax(), just as in

the last chapter double([1, 10, 5]) was an invocation of the function double(). In

this case, it’s not a list but an integer value, 1500, that is being passed into the function

tax(). What answer do you expect to result?

Programming Fundamentals	 69

You don’t have to understand everything about how a function or program works to

have an expectation about what it will do. Nor do you have to have computer-like com-

putational abilities to have some expectation about a result. In this case, because we

know that the tax() function computes tax at the 8.875 percent rate, you can expect

that the answer is the same as 1500 * 0.08875.

Having thought about this a bit, go ahead and press Shift-Enter:

↵

Is the answer the one you expected? If it isn’t, it is almost certainly because the two

lines beginning def and return weren’t typed in properly. To fix them, you can just

edit them in the original cell. There aren’t many other explanations for what the prob-

lem could be. I suppose someone could have possibly played a prank on you by replac-

ing your Python interpreter with a similar-looking program, but that seems unlikely,

to say the least.

You should find that typing tax(_____) and typing _____ * 0.08875 yield exactly

the same results when you put the same numbers in the two blanks. Of course, check

this yourself with a few values. By doing so, you’ll get practice using the Python inter-

preter to verify your expectations about your code. Or, if there is an error in tax(),

you’ll likely uncover it.

Because tax() returns a value, it can be given an argument and used in an expres-

sion itself. Here’s how to determine the total that a customer should be billed for

$1,500 worth of surveillance, which we get by adding the subtotal to the computed

tax amount:

1500 + tax(1500)↵

If the customer owed $200 from a previous invoice, the total amount owed would be:

200 + 1500 + tax(1500)↵

One of the most important ways programmers use abstraction is by placing code in

functions. Doing so has several practical and conceptual advantages. Without writing

the following program, we’ll imagine a billing program that uses tax() to compute the

tax on private detective services. Let’s imagine the completed program uses the func-

tion tax() in a few places because there are some different contexts in which services

are taxed.

Here is a simple-sounding but important advantage of developing a function. The

function here is called tax(), a name that suggests it is computing how much tax is

owed. If we simply wrote * 0.08875 in the code instead of calling this function, and

instead of using the word tax, there would be no overt sign that a tax computation is

70	 Chapter 6

being done. Now, we could add such an indication by writing a comment, which is for

people to read and which is ignored by the interpreter:

sum = 1500

sum = sum + sum * 0.08875 # Add the tax amount↵

This should update the value stored in the variable sum, but you’ll of course want to see

what the new value is, so:

sum↵

You’ve already seen that you can add comments beginning with # in Jupyter Notebook.

They can also appear, as here, on the same line as code. Everything from # on is simply

a human-readable annotation, having no effect on how the program runs. These com-

ments can be included in any situation, function or no function, to help document

our programs. When we develop a function such as tax() or declare a variable such

as sum, we are also explicitly given the opportunity to name that function or variable

meaningfully. Comments can be very helpful; I believe meaningful naming is an even

more important practice.

An advantage of a function like this is that it allows the tax computation to be

implemented and tested on its own. The formal definition of this function is essentially

done in the same way this tax rate is defined in New York City’s tax documents and

used in manual accounting practices.

Another advantage of placing the very simple expression subtotal * 0.08875 in its

own function is that when the tax rate changes, as it surely will at some point, it’s pos-

sible to update the program by editing it in a single place. If the tax rate is represented

in just one place in the code, there is no danger that the old rate might be left in some

places and might be updated in others. Avoiding this sort of duplication is an impor-

tant principle in programming, helpful to explorers as well as professional software

engineers: DRY, which stands for don’t repeat yourself.

It could happen that a more elaborate tax computation—not a single rate—is put

in place. For instance, New York City could decide that services below $1,000 will be

taxed differently than services that are $1,000 or more. In that case, the update would

require something more than just exchanging one number for another. Again, if the

tax computation is done in a single place in a function, it would only be necessary to

change it in that one place, the function tax().

So for both developing a program in the first place and maintaining it later on, it

makes sense to place meaningful computations—lines of code that carry out particu-

lar related work—together in a function. And we can get an idea of that even with a

Programming Fundamentals	 71

function that has only a single, simple line of code in it. When we progress to more

involved computations and longer functions (and methods), this should become even

more clear.

[6.3]  Functions Have Scope

There is a wrinkle to the power of functions: the ability to bundle code into them. A

function creates a special universe of its own with its own set of variables—different

from the variables in the outer universe, where the function is being called. Try the

following:

def set_a():

 a = 10

 print('The value of a:', a)↵

That defines a function in the computing sense. There’s no return in this one, though,

so this function doesn’t provide an answer. This one just displays an informative mes-

sage indicating that a has been set to 10. Try it:

set_a()↵

Now, to get really trippy, try this:

a = 20

print('Initially, the value of a:', a)

set_a()

print('Finally, the value of a:', a)↵

Unless you completely understood my brief comments about a function having its own

special universe, this result should look curious to you—at least, the first time you see

it. What’s happening here is an effect of scope. The variable a that is inside the function

set_a() is bound to that function; it doesn’t matter if there happens to be another

variable outside that function named a that has some value. In addition, the a that

exists outside of that function isn’t affected by what goes on inside. Initially, that a in

the outer universe is 20; within the function, the function’s own special-universe a is

set to 10; and after the function is invoked, the “outer” a is still 20. What’s happening

with variables within the function is actually separate from how variables are set, and

what values they have, in the outer universe, the level where that function is being

called. What happens in set_a() stays in set_a().

72	 Chapter 6

Think for a bit about what would happen if we didn’t have scope. In a large project,

my function (imagine a real function that is doing some work, not this simple set_a()

example) might be called in a hundred different contexts (or even more). If scope

didn’t exist, none of the variable names used in those outer contexts could also be used

within the function. I would need to write a function that didn’t use the variable a or

num or whatever else occurs in all of those other contexts. Perhaps I would end up using

some cryptic variable name such as plmoknijbuhvygc to avoid repeating the name of

some other variables being used in the context. What if my function calls itself? As

we’ll see later, this is possible. Scope takes a little bit of work to understand. But without

scope, programming would be much messier.

Having all variables remain “active” inside a function would do a lot to wipe out the

benefits of abstraction and code bundling. It makes much more sense to have scope.

If a programmer wants to pass in some values that the function can work on, the

programmer can do so explicitly in the arguments to the function, not in cryptic and

possibly accidental ways by having a variable on the outside somehow entwine with

one on the inside. But this does mean that programmers need to consider the calling of

functions and nesting of code; a in one part of the program may not be a everywhere.

Here’s one more example of a function being defined and invoked, this one a bit

more complex:

def scoped(first, second):

 third = second + second - first

 return third

first = 10

second = 11

third = 12

scoped(2, 4)↵

first↵

second↵

third↵

When first, second, and third are used at the top of the snippet of code, in scoped(),

those names apply only within the scope of that function. The variables first, second,

and third that are defined right after the function definition apply in that “outside

Programming Fundamentals	 73

universe” and could have been anything, including a, b, and c. So the values given to

them before scoped() is called remain the same after the function is called.

The function scoped() has two arguments, which are called first and second.

Those two arguments effectively become variables within the function. They are lim-

ited to that function’s scope. When execution of the function ends with return third

and the corresponding value is sent back, those local first and second variables are no

more. The scratch paper on which computation was being done is thrown away, and

the program continues executing at the higher level, where different variables, first

and second, are defined.

Up at the top, in the first three lines, first, second, and third could have been called

la, lala, and lalala and the function would work in exactly the same way. Prove it to

yourself by making the change, substituting those three names for first, second, and

third in the function definition, in those first three lines only. You do need to change

[Figure 6-1]
A new piece of scratch paper is taken out (conceptually) when a function such as valid() is

invoked. The only thing on that paper initially is whatever arguments the function has, with

whatever values were passed in to the function. Here, the function call is valid(c) and c has the

value 3. That means that when this function, defined as having the single argument x, begins its

work, it will have only x (associated with the value 3) on its scratch paper.

74	 Chapter 6

both occurrences of first, all three occurrences of second, and both occurrences

of third.

I used the word universe because, while it sounds a bit far out, it is an existing word

in common use and a concept that can help some people to understand scope. Another

way to explain that a certain variable, such as a, i, or num, can exist in different uni-

verses of these sorts is to say that these variables are situated in different contexts.

And it’s also possible to think of a function as getting out scratch paper and doing its

work with whatever variable names it likes, then discarding the scratch paper when it

finishes its task and returns a value. The arguments to the function hold the values that

the function needs to do its work, and once it gets an answer it sends that back using

the return value. What happens in between is just temporary computation taking place

on the function’s scratch paper.

The benefits of scope, like the general benefits of bundling your code into functions,

become clear when one starts writing longer programs. If you’re just writing a few lines

of code to try out some ideas and quickly explore a concept, having these multiple

universes—or multiple contexts—or a scratch pad—may not be so advantageous. But

when you start to scale up and write even slightly more elaborate programs, knowing

about functions and scope will be essential.

[6.4]  Iteration (Looping) Abstracts along Sequences

One of the simple but important capabilities of computers is that, after computation is

bundled up in some way (such as in a function), it can be applied many, many times.

For a computer, it’s about as easy to do a computation one time or a million times. If

you host a popular forum on the Web and notice, while reading along, that someone

has used a lot of exclamation points in a post, you might decide to investigate the use

of punctuation by members of the forum. Your computer can go through tens of thou-

sands of posts and count the exclamation points in each one in about as much time as

it would take you to examine a single post. You could then see if the use of exclama-

tion points is more highly correlated with particular threads, times of year, users, or

something else. And, of course, it would not be much more difficult to look at more

sophisticated statistics of posts that go beyond counting occurrences of single charac-

ters: a simple statistic such as average word length could provide a crude estimate of the

reading level of posts. More elaborate techniques such as topic and language modeling,

and, for instance, sentiment analysis, are not beyond the reach of researchers who have

a bit of background in programming and a willingness to explore.

Programming Fundamentals	 75

But to get started on a process such as this one, it’s important to be able to write a

program that can iterate—run through sequences of data, doing the same computa-

tion on each one. Back in the day, computer programs were encoded on punched

paper tape, and to run a program, this tape ran through machinery. Iteration could be

achieved by actually making the paper tape into a literal loop, so that the computer

would keep processing it again and again. The general concept of looping (or iteration),

then, isn’t hard to grasp. After understanding more detailed aspects of this concept, it

will be easy for a programmer to generalize computation to lists and other sequences.

To begin, let’s look at a very simple type of iteration which has the effect of display-

ing every element in a list on screen. This is commonly called printing, and most people

are quite comfortable with the term being used in this way, although Gutenberg would

probably be quite surprised at this particular usage.

We can define a list like so—using the letter l, not the numeral 1:

l = [7, 4, 2, 6]↵

This looks a lot like the line x = [10, 20, 30]—a line we saw and input into Jupyter

Notebook in the previous chapter. Let’s be clear, at this point, about what this line of

code means. We are not asserting that l equals [7, 4, 2, 6] here, nor are we asking the

computer to tell us if l is equal to that list. Even though we are using the symbol that

is well-known as the equal-sign, we are actually not dealing with equality. In Python,

it is necessary to use two equal-signs (==) when we want to check whether one value or

variable is equal to another.

This line, instead, is performing an assignment. It declares that the variable named

l will be assigned the value [7, 4, 2, 6]. Or, to phrase that differently, it means that

the list of numbers [7, 4, 2, 6] will be given the label l so that we can refer to it by

that label.

Type this in to iterate over (or iterate through) the list l like so:

for num in l:

 print(num)↵

The for statement indicates iteration and declares that the program should do the

same thing “for” each element of the list, which in this case is named l. Each indi-

vidual element is, as we go through the list, given the label num, so that initially num is

7, then num is 4, then num is 2, and finally num is 6. And at each step, a simple operation

is performed: the value of num is displayed on the screen using print().

This is a simpler process than seen in the function double(), but notice that it does

not return a value that can be used in further computation. It just displays data for a

76	 Chapter 6

person to read—perhaps in an informative fashion, but not in a way that can be built

upon. The functions we write typically return the values we’re trying to compute. How-

ever, we have the option of using print() to provide us with information along the

way, as we develop and debug our functions.

There is a kind of pattern for iteration, one that looks like this:

for ____ in _____:

In the first blank is the variable that will be used to hold each element. It can be called

almost anything; num is used in the preceding example, but it might be i or element or

anything that isn’t used as a Python keyword.

In the second blank is the sequence to iterate through. I’m using sequence without

giving an official definition. The term actually has an official definition in Python, but

our folk understanding works well enough for now. A sequence can be what a function

generates or returns. In general, we might use a sequence that is something other than

a list. In our discussion so far, what we have is the list labeled l, and it’s good enough

to understand a sequence as some elements in order.

After that second blank is an important part of the template, although it’s a single

character, :, a colon. This is necessary to indicate that everything that is indented

underneath is part of this iteration and included within this for loop.

In the third blank—and possibly occupying more than one line of code, all within

this same level of indentation—is whatever we want done during each iteration. This is

the code that will be run “for” each element of the list.

When you’re studying how to iterate through a sequence, you’ll see for and in very

often because they are fixed parts of the iteration template and, indeed, are keywords.

The name of the variable that holds each element, and the name of the list, is free for

the programmer to determine, as is the code that runs each time.

Having tried the first version, try this variation:

for num in l:

 print(num * 2)↵

Now you can see that, in addition to just enumerating the list, and displaying each

element, there is the potential to compute at every step. Nothing very exciting has hap-

pened yet, but it should now be evident that iteration allows true computation to take

place; it’s more than simply a way of displaying the elements. Again, although we’ve

used print() here to provide an expedient display, we will generally write functions to

return values instead—as in the next example.

Programming Fundamentals	 77

Let’s take a straightforward (if not completely exciting) operation that we can do on

any sequence of numbers: we can compute the average, or, to be very specific (as there

is more than one type of average), what is called the mean. That’s what is most com-

monly called the average—in issuing grades, for instance, or determining the average

number of runs a baseball player has batted in per game. It’s the number that is the sum

of all the data points (7 + 4 + 2 + 6 in the list l, for example) divided by the number of

data points (there are four in the list l). For two points, it’s simply the sum of those two

numbers divided by two. For three points, it’s the sum of those three numbers divided

by three. And so on for any number of points.

Here’s a way to compute the mean of any sequence and return it. This code is a bit

longer than the very short snippets seen so far, but you can go back up and edit it in

Jupyter Notebook if you make a mistake. First, we’re going to type in this function and

leave out an important part of it. We’ll see what error crops up, and then we’ll fix the

function.

def mean(sequence):

 for element in sequence:

 total = total + element

 return total / len(sequence)↵

You’ll need to remove the indent to one level (or four spaces) to enter that last line.

This represents one code block (the iteration) ending and the next line beginning in

the previous code block (the function definition). You can just tap the Backspace key,

or, on a Mac, the Delete key, a single time to go back one level of indentation.

Division (indicated with the / operator) was mentioned earlier but is being used

in this book for the first time here. There’s nothing particularly special about the way

division works in Python 3.

WARNING! If for some reason you are using Python 2 instead of Python 3, which you should

not be doing when you use this book, division is actually defined differently! Use Python 3

with Exploratory Programming for the Arts and Humanities, Second Edition.

This code is, again, defining a function. It has a for loop that iterates through every

element of the sequence, which is passed in as an argument and is meant to accumu-

late the total. Then it returns that total divided by the number of elements, which is

the mean.

However, it won’t work right away. Run it—or to be precise, call it on some sequence

of numbers—to see why not.

78	 Chapter 6

The problem is that this code instructs the computer to use the value total (on the

right-hand side of total = total + element) before any value has been assigned to

it. It’s like asking the computer for the answer to temperature - 80 before you have

given any value to temperature. Go ahead and type temperature - 80 into Jupyter

Notebook, press Shift-Enter, and see what happens. The way to fix this problem in our

particular case is by adding an extra line, as follows:

def mean(sequence):

 total = 0

 for element in sequence:

 total = total + element

 return total / len(sequence)↵

The first thing done in the new version of the function is in the line total = 0. That

line is initializing the variable total. It assigns the value 0 to total, which is indeed the

value that should be in there before anything has been accumulated.

Initialization of this sort makes good conceptual sense. If you’re counting up how

many books you have in some row of boxes and you’re keeping your answer on a

notepad, before you open that first box, your initial answer is 0. You haven’t seen any

books yet. Of course, if you were doing this activity yourself, you probably wouldn’t

write down a zero on your notepad to begin with. You would just open the first box.

But in Python (as with other programming languages), we have to say that we want to

use a variable named total and we have to give it some explicit value to begin with.

Otherwise, we can’t increase the value of total by assigning it using the line total =
total + element.

After we’ve added this initialization, as the for loop iterates through each element

in the sequence, the value of each element is added to total. Finally, the value that’s

returned is the accumulated total divided by the length of the sequence.

Try this function out on a short list in which the mean is obvious—for instance, one

in which every element has the same value:

short = [5, 5, 5, 5]↵

mean(short)↵

The mean should certainly be 5. It almost is, but notice that the answer has a decimal

point followed by a zero. At the final step, when division occurs, the resulting value is

not an integer, but of a different type. Consider this a preview: types are discussed in

the very next section, 6.5, Polymorphism Abstracts across Types.

Programming Fundamentals	 79

Next, try defining a more interesting, but still fairly short, list, and see what the

result is. For instance, you can tell that [-5, 0, 5] should have 0 (in this case, repre-

sented as 0.0) as its mean.

You should be able to prove to your own satisfaction that you have a function that

is completely general to a sequence of any length. Let’s be clear about what that means:

whether you have a list with four numbers in it or ten thousand, this function will find

the mean. I actually defined a list of ten thousand elements in a Python interpreter to

make sure that this would work and to see mean() functioning properly on this list.

Indeed, everything worked. I was sure this would work already, but I wanted to be able

to truthfully write that I had done this, to make it clear that you can prove these things

to yourself. This means that, just by using a for loop, the computer is able to amplify

your powers of analysis thousands and even millions of times. In this simple case,

we’ve done a numerical operation, but text and other media can also be treated in this

way, as we will see soon.

[6.5]  Polymorphism Abstracts across Types

We’ll investigate the concept of types by examining three different values and by

checking to see what type each of these values is. Once we get a handle on types, we’ll

be able to see how a mouthful of a concept (polymorphism) allows for abstraction

across different types.

A value is a specific piece of data. Values can be stored in variables, which can be

understood as slots or labels for different sorts of values. So the variable x, for instance,

can be used to label any value:

x = 5↵

And we can check to see what type of value the variable x holds by using the built-in

type() function:

type(x)↵

Notice that we get the same answer if we just check the type of 5 directly:

type(5)↵

This type, int, is what Python uses to represent integers—numbers without a decimal

point. Let’s check what type 'hello world' is:

x = 'hello world'

type(x)↵

80	 Chapter 6

Notice that the type associated with the variable x has changed, as it should have.

This str is a string, a sequence of characters, which is what 'hello world' is. Before

continuing, check to see what the type of 'hello world' is by directly checking that

value, just as you checked what type(5) is.

Now, use type() to see the type of the list [1, 2, 3]. This function tells us that

the type is list. We could actually be more specific when describing this list: it is a list

of integers.

As you program, writing functions and using them, you should have a sense for

what type of argument, or arguments, a function accepts and what type of result it will

return. It’s part of understanding what computation you have specified.

A handy feature of Python is that certain functions, and certain operators, work on

several different types. For instance, given two strings, a and b, it’s possible to join these

strings together in two ways, with a at the beginning or with b at the beginning. The

operation of putting two strings together is called concatenation and is done in Python

as addition, using +. So as you think about what you expect will happen, try typing:

'hello' + 'world'

And, after guessing what will result and pressing Shift-Enter, try:

'knock' + 'knock'

Again, wait to make a guess before pressing Shift-Enter so that you can see if you get

the result that you expect.

You can also assign the strings you are using to variables and then concatenate the

variables:

a = 'hello'

b = 'world'

a + b↵

Let’s also use another built-in function, len(), which provides the length of its

argument.

len('hello world')↵

len([1, 2, 3])↵

You can see quickly that len() works on both strings and lists. For strings, it returns

how many characters are in the string. For lists, it returns how many elements the list

has. Both of these are fairly easy to understand as being the length of these sequences.

Try this and, before you press Shift-Enter, take a guess about what the result will be:

Programming Fundamentals	 81

len(['hello', 'world'])

What exactly is that argument that we handed to len()? It’s a list . . . that has a certain

number of elements . . . each of which is a sequence, specifically a string . . . and each

of which has a certain number of elements. Okay, make your guess and press Shift-

Enter. When we check the length of some sequence, it doesn’t matter if it’s a sequence

of sequences or of some other types. This built-in function just returns how many ele-

ments the sequence (i.e., the outermost one) has.

You know too that + is used for addition and that Python understands 2 + 2 as

being 4. Python also returns the result 'helloworld' when asked to compute 'hello'
+ 'world'. Thus, + also means concatenation, putting strings together, when the argu-

ments are strings. But not everything has a length and not everything can be added

together. Try these to see some types that don’t work in these ways, by typing first:

len(5)↵

and then:

2 + 'hello'↵

In the first case, Python doesn’t understand integers as having a length. It’s not that

the concept is completely senseless; an integer does have a particular number of digits,

and some numbers could be considered longer than others. It’s just that this aspect of

integers—their length—isn’t represented in Python’s model of what an integer is. Simi-

larly, we can imagine adding the number 2 to the string 'hello'—and we could come

up with a rule that would allow us to put integers and strings together in some con-

sistent way. In fact, these additions can be done in other programming languages. But

Python doesn’t provide for an int and a str to be added together.

These TypeError messages are produced because trying to take the length of an inte-

ger and trying to add an integer to a string are probably mistakes. Code that does these

things is likely to be wrong. If we really want to add the number 2 to 'hello' and get

'2hello' as a result, or if we really want to see how many digits are in the number 5,

how long it is, we can convert those integers to strings before attempting these opera-

tions, as in:

len(str(5))↵

and:

str(2) + 'hello'↵

Try these out! This tells Python to treat these integers as strings and tell us how many

characters are in the string (in the first case) and that the lexical unit '2' should be

82	 Chapter 6

concatenated, string-like, to 'hello'. If we want to treat 5 and 2 like strings, we can

explicitly make them into strings. Converting between types is called casting and is an

aspect of programming that is typically encountered early on and used fairly often.

When a single arithmetic operator, function, or method is able to work on several

different types of data, such as integers, strings, and lists, this is an example of polymor-

phism. If you use a programming language such as Python that implements polymor-

phism for things such as equality and arithmetic, you will find that programs you write

with one data type in mind will sometimes work perfectly well on other types, and in

other cases they can be adapted easily to work on different types of data.

Polymorphism is also something that can be designed and implemented in particu-

lar cases. For now, instead of trying to go into detail, I’ll just mention that a program-

mer can “manually” implement functions that accept arguments of different types

(both strings and integers, for instance) and provide the right answers in either case.

[6.6]  Revisiting “Double, Double”

It may be clearer, at this point, why double() was introduced as the first snippet of

code in this book. This function, in only five lines, exhibits all three types of abstrac-

tion discussed so far.

In it, code is bundled together in a function. It didn’t have to be this way. We can

write code that isn’t in a function and that does the same thing. Try it out:

volume = [4.0, 2.0, 3.0, 5.5]

result = []

for element in volume:

 result = result + [element * 2]

result↵

That code takes a list of volume levels and doubles it, using the same technique that is

bundled into double(). The answer ends up in the variable result. (Notice that after

doubling, my volume level actually goes to 11!) This is very much like an example of

iteration given previously.

Because we’ve taken the essential process of double() and pulled it out of the func-

tion, let’s go one step further to try to understand what’s happening in the line within

the loop. To see what’s happening, we’ll unroll this loop and step through it:

result = []

result↵

Programming Fundamentals	 83

This shouldn’t be a surprise. The variable was assigned the value of the empty list, and

it has that value.

Now perform the first pass through the list, where the first (doubled) element gets

added:

result = result + [4.0]

result↵

Now the second element:

result = result + [2.0]

result↵

Can you see how the list is being built up? At each step, a tiny (one-element) list

is being added (concatenated) to the current result. Go ahead and finish adding the

final two elements in this way, to see that you get the right answer.

Now, why are there those brackets around each value? What would happen if we did

the following? Make a guess about the outcome before you press Shift-Enter!

result = []

result = result + 4.0

Is this addition going to work? What are the two things being added? Or, at a higher

level, what are the types of the two things being added? One is [], the empty list . . .

and the other is 4.0, a float (i.e., a number with a decimal point). Can we add these

together? After you guess yes or no, press Shift-Enter and you’ll know for sure.

To build up the list that is our final answer, our “result,” we can’t add 4.0, then 2.0,

then 3.0, then 5.5. We have to add (or concatenate) a list with a list. So, starting with

[], we add [4.0], then [2.0], then [3.0], then [5.5].

To learn about what’s going on, it’s useful to pop the hood and see what’s happening

step by step. But the general problem with writing offhand code, not contained in a

function, is that if we want to double the volume levels again, or double anything else,

we have to enter those two lines beginning with for element again or copy and paste

them or the like. Whether we retype them or select and copy, we have the potential to

make mistakes, and we will definitely make our overall program longer and harder to

work with. We wouldn’t be following the good advice of DRY (don’t repeat yourself).

With the way double() is written, on the other hand, that code is usefully bundled and

can be easily reused.

double() also does iteration, going along and doubling each of the elements in a

sequence, whether there are zero or several thousand. This function does it using a

loop—specifically, a for loop.

84	 Chapter 6

In addition, double() implements polymorphism as well, although there are no

special signs of that in the code. Because this function computes * 2 for each ele-

ment of a sequence, it can work on any element that can be multiplied. The volume

level example earlier shows that the code in double() can double not just integers,

as we saw earlier, but also floating-point numbers. (Try doubling volume using dou-
ble() to see that the function itself works the same way.) This function can also

double strings:

words = ['hello', 'world']↵

double(words)↵

This versatility comes for free, thanks to the use of multiplication (which can work on

several different data types) within the for loop. Notice that we can even have a list

with different types of elements, and as long as each one can be multiplied, double()

can take the list as an argument:

countdown = [3, 2, 1, 'contact']↵

double(countdown)↵

And, finally, recall that strings and lists are both sequences, and the way double() was

written certainly suggests that it will work on sequences. So instead of giving this func-

tion a list as an argument, give it a string—and wait before pressing Shift-Enter:

double('abstraction')

What do you expect will happen? Formulate a clear guess of some sort. Then, find out:

↵

[6.7]  Testing Equality, True and False

Try this expression in your Jupyter Notebook:

2 + 2 == 4↵

I mentioned (briefly) that == is different than = in Python. A single equal-sign is what

is used for assignment, giving a variable a value. Two equal-signs are used to test if the

left-hand side and the right-hand side are equal. When I first asked you to work with

Jupyter Notebook, in 4.2, Calculations, I asked that you see what 2 + 2 evaluates to: the

answer is 4, of course, and Python gets this answer right. Now, the line you just tried

asks if the left-hand side and right-hand side evaluate to the same thing. In this case,

unsurprisingly, yes. So Python gives us the answer True.

Programming Fundamentals	 85

Now try checking to see if 2 + 2 evaluates to the same thing as 3. You know the

answer, but see what Python tells you when you ask the question. Try once more, and

see if 2 + 2 is equal to 3 + 1; then, check to see if 2 + 2 is equal to 2 + 1.

What Python is providing as an answer to your question is not a string, like 'hello'.

You may have guessed that because the value does not have quotation marks around

it. It is data of a different type, and this type is called Boolean. This data type gets to

be capitalized, unlike integer, string, and the other types we’ll encounter, because it is

named after a person, George Boole.

To glance ahead briefly, it’s not only a test for equality that can result in a Boolean

value of True or False. A test for inequality (e.g., is the left-hand side less than the

right-hand side?) will also result in this type of value. For now, let’s start with == and

see what we can do with that.

Checking equality is most useful when there’s at least one variable involved. For

instance, try this (two-step) equality test to see that variables can be included in our

equality tests:

greeting = 'hello'↵

This part assigns a value to the variable greeting; it doesn’t conduct a test. So nothing is

returned; we just have this assignment done after Shift-Enter has been pressed.

greeting == 'hello'↵

This part is the test, using the == operator. Let’s try a different test, which we hope will

give us a different result:

greeting == 'hi'↵

Try doing a few other variable assignments and equality tests, using some data of dif-

ferent types. Integers, for instance, or sequences, if you like.

[6.8]  The Conditional, if

Type this simple function into the Python interpreter:

def secret(word):

 if word == 'please':

 return 'Yes!'↵

Notice that this includes that test for equality using ==, which is completely different

from assigning a value to a variable using =. Now, try it out:

86	 Chapter 6

secret('hello')↵

secret('world')↵

secret('please')↵

The first two tries do nothing. They don’t cause errors; they simply result in the func-

tion concluding with no output. The third call returns the value 'Yes!' to signal that

the correct word was input. This shows the essence of the conditional statement, also

called the if statement. It causes certain code to run only if the condition is true. (In

Python, as was just discussed in the last section, the truth or falsity of a condition is

represented by the special values True and False.) In this case, the word please has

to be given as an argument to the function, and the word has to be passed in exactly

as stated: entirely in lowercase and without spaces or anything else on either side.

Try typing in secret(' please') and secret('Please') to see for yourself that these

won’t work.

Here’s another similar function that uses the conditional. It checks to see if the argu-

ment is the string 'yes' (just as secret() checks to see if it is 'please') and returns

the Boolean value True if it is. Then, it checks to see if the argument is 'no' and returns

the only other Boolean value, False, if it is. If the argument is anything else, it does

not return a value at all:

def yesno(word):

 if word == 'yes':

 return True

 if word == 'no':

 return False↵

Try out yesno() and see if it provides the appropriate results—for instance, by typing:

yesno('haha')↵

yesno('no')↵

yesno('yes')↵

yesno('Yes')↵

This function could be improved; you might want it to recognize 'y' and 'n' as well,

and it should probably ignore the case of the string. But perhaps you can already imag-

ine how it might be used in a program that prompts the user for a yes/no reply. If the

Programming Fundamentals	 87

code to check for an affirmative or negative reply was bundled in a function like this,

the same code could easily be used in several places in the program. And improvements

that were made (to ignore the case of the reply, for instance) could be made in one

place and would apply everywhere. If you wanted to translate this function to work in

a different language, that too could be done once in a single place.

Now, let’s go back to the original secret() and modify it so that it returns 'Yes!' if

the word 'please' has been entered and otherwise returns 'No':

 if word == 'please':

 return 'Yes!'

 else:

 return 'No.'↵

Take a look at what this code does. It uses a new keyword, else, to indicate some

(indented) code that should run “otherwise”—when the if condition doesn’t hold.

What if we want secret() to return True or False instead of those two strings?

def secret(word):

 if word == 'please':

 return True

 else:

 return False↵

This code works, but it turns out there is a very nice way to refactor it. When we revise

code in order to refactor, we aim to keep the function of the code exactly the same, but

to make it easier for people (including the original programmer) to read, understand,

modify, and further develop. We want True when word has the value 'please' and

False otherwise, so we could write this new version of secret() as follows:

def secret(word):

 return (word == 'please')↵

In this particular case, the whole conditional expression is superfluous. We really just

want to return whether or not the value of word is the string 'please'. So we can sim-

ply return the result of that equality test.

This doesn’t mean that the conditional is useless. We used it in yesno() a bit earlier.

It will have plenty of other uses, as we’ll see. But sometimes there are ways to simplify,

and a beloved construct such as the conditional turns out to be unnecessary.

88	 Chapter 6

[6.9]  Division, a Special Error, and Types

To complete the discussion of basic arithmetic, just a few more brief comments on divi-

sion. One special thing about division is that unlike addition, subtraction, and multipli-

cation, it is not defined for every set of operands; you can add, subtract, and multiply any

number with any number of the same type, but that isn’t true for division. If we’re talk-

ing about the integers (numbers without a decimal point, including positive numbers,

negative numbers, and zero), A + B has an answer for every A and B. The same is true

for A − B and A × B. The reason that this isn’t true for A / B is because division by zero is

undefined. There is simply no answer to A / 0 for any value A, even if A itself is also 0. No

calculator, math teacher, or accountant can find one for you, and the Python interpreter

can’t either. Try dividing by zero in Jupyter Notebook and see what error is produced.

So, consider the consequences. If you write a program that generates a random num-

ber B, possibly 0, or that accepts input from the user and allows the user to define the

value B, possibly as 0, then if that program continues and tries to calculate A / B, it can

crash. When you’re writing short, ad hoc, exploratory programs for your own use, this

might not matter; if it happens rarely, you could just run your program again, and,

whatever. But generally, it does matter. Fortunately, there’s an easy fix for this: don’t

ever allow your program to attempt to divide by zero! It’s an operation that makes

no mathematical sense, and a program that attempts this operation isn’t constructed

properly. Later, I’ll discuss practical ways to prevent a calculation from happening in

special cases such as this one.

Now that we know a little about polymorphism (the way the same operation can

apply across types), here’s another wrinkle to division. Notice that strings can be mul-

tiplied by integers:

'hi' * 2↵

But they cannot be divided by integers:

'hihi' / 2↵

That may seem a little unusual, but there are gaps of this sort when operations are

made to work across types. The analogy to arithmetic on numbers simply isn’t com-

plete in this case. It would be tricky to make string division work, and while it could

possibly be defined in a consistent way, it’s not clear that it would be worth the effort.

[Exercise 6-1]  Half of Each

Write a function half() that is very much like double(), but instead of returning a

new sequence with double each element in the original one, it returns a new sequence

Programming Fundamentals	 89

with half of each element in the original one. That is, if the first element in your initial

sequence is 6.6, the first element in your answer will be 3.3. Your function just needs to

work on sequences of numbers. You can use the double() code and very slightly mod-

ify it. Don’t strain yourself! There are two “easy” ways to do this that I can think of that

both involve very slight modifications of double(); see if you can find more than one

straightforward way to accomplish this task. The two methods use different operators.

[Exercise 6-2]  Exclamation

Write a function exclaim() that is very much like double(), but instead of returning a

new sequence with double each element in the original one, it returns a new sequence

with an exclamation point added to the end of each element in the original one. That

is, exclaim(['hello', 'world']) will return ['hello!', 'world!']. Again, you can

use the double() code and modify it. To begin, get your function working so that

when you give exclaim a list of strings, it works properly. Then, as a second step, see

if you can use casting as described in 6.5, Polymorphism Abstracts across Types so that

whatever the elements are, the function will work. For instance, after this second step,

exclaim([1, 2.2, True]) will return ['1!', '2.2!', 'True!'].

[Exercise 6-3]  Emptiness

Write a function has_no_elements() that accepts a sequence and returns a Boolean.

The function returns True if the sequence is empty—that is, if it has no elements—and

False otherwise.

[Exercise 6-4]  Sum Three

Write a function sum_three() that accepts three values—not a sequence, but three

arguments—and returns the sum of those three values. At the end of 6.3, Functions

Have Scope, there is an example of a function, scoped(), that takes two arguments.

Given this, you have already seen and typed in functions that accept zero, one, and two

arguments, so now generalize to three.

[Exercise 6-5]  Ten Times Each

Write a function ten_times_each() that is very much like double(), but instead of

returning a new sequence with double each element in the original one, it returns

a new sequence with ten times of each element in the original one. You can use the

double() code and slightly modify it. There’s no trick here! It’s an exercise in not over-

thinking it: something that should take a few seconds. This is just to get practice and

cement your understanding of functions and of double().

90	 Chapter 6

[Exercise 6-6]  Positive Numbers

Here is a two-step exercise that asks you to develop functions that combine iteration and

the conditional. In this exercise, you need to accumulate a value in two different ways.

First, define positive(), a function that takes a sequence as an argument and

counts up and returns how many positive numbers (numbers greater than 0) are in

that sequence. You will want to notice that not only can you test equality using ==, you

can also test for inequality using < (less than) and > (greater than).

Having done that, start with positive() and modify it to create pluses(). This

function should compute and return the sum of all positive numbers—ignoring any

numbers in the sequence that are negative or zero.

[Free Project 6-1]  Further Modifications to “Double, Double”

Do this project at least two (2) times, developing different modifications. Now that

we’ve seen more about how double() works and understand some of the fundamentals

of computation related to that, modify the function again to make it do something

interesting (according to you) when it is given a list of strings. See if you can keep many

of the aspects of double() while changing at least one aspect significantly. Your func-

tion does not have to work on any other sort of list. You also don’t need to skip ahead

to figure out any specifics of how strings work. Just use what you’ve learned already. Of

course, don’t exactly duplicate any of the previous exercises, all of which you are sup-

posed to complete in addition to the free project.

[6.10]  Essential Concepts

[Concept 6-1]  Variables Hold Values

A variable can be thought of as a “bucket” or container into which different values can

be placed. Or, if you like, you can think of it as a “tag” or label that is given to a particu-

lar value. Variables can vary, in that they can contain or label many different values,

depending upon what is assigned to them using the = operator.

[Concept 6-2]  Functions Bundle Code

A powerful way to write code is to bundle it together in functions. If you’re really only

going to use some code once, there’s no need to do this. In general, however, program-

mers will want to use the same bit of code again and again, not only to compute a tax

amount but also to process every word or line in a text, every pixel in an image, or

every text or image in a corpus. Whenever you complete code that you might use or

deliver later, bundle the essential computations up into one or more functions.

Programming Fundamentals	 91

[Concept 6-3]  Functions Have Scope

Functions define their own universes, or contexts. They are their own pieces of scratch

paper. They have values handed in via arguments. Inside the function, any variable

names can be used, regardless of whether there is a variable outside with some value

assigned to it. When the function is done, it can return a value; the scratch paper is

always thrown away.

[Concept 6-4]  Iteration Allows Repeated Computation

Whatever can be done to an element of a sequence (such as a list) can be done to every

element, using the for statement. Be able to take any function that works on one

element and apply it to every element in a list. You really must be able to generalize

computation in this way or it won’t be possible to progress much further. Finally, be

able to accumulate a result, in the way that double() does by building a list, in the way

positive() does by counting, and in the way pluses() does by accumulating a total.

[Concept 6-5]  Types Distinguish Data

Understand that there are different types of data and that you can determine the type

of a particular value held in a variable. See that different computations apply to differ-

ent types—some only work on sequences such as lists, some only work on numbers,

and so on. Understand that some functions and arithmetic operators are polymorphic

and apply to different types. Have a good sense of the essential differences between

integers, floating-point numbers, strings, Boolean values, and sequences.

[Concept 6-6]  Equality Can Be Tested

Just as Python will evaluate arithmetic expressions such as 2 + 2 for you, it will also

evaluate equations such as 2 == 2, as this one would be written in Python. Understand

that the result will be one of the two Boolean values and that you can check to see if

a variable has a particular value using the equality operator, ==. In doing the exercises,

you should have figured out that inequality (whether one value is greater than or less

than another) can be tested, too.

[Concept 6-7]  The Conditional Selects between Options

The if statement in Python allows for one computation to be done in one case and

another computation (or no computation at all) to be done otherwise. There are several

formulations of the conditional, but it’s important to understand the essential ability

of the if statement to determine whether or not a condition holds and to apply com-

putation if it does.

[7]  Standard Starting Points

[7.1]

Computer programs can be rhetorical, sometimes quite obviously so. Some rhetorical

aspects become particularly clear when considering the particular programs that are

used to introduce programming and computation. A starter program can suggest a great

deal about computing. In this chapter, three conventional starter programs are pre-

sented for the reader to type in and run. The chapter explains how each program works

and uses these programs (as originally intended) to introduce programming. In addi-

tion, these programs are discussed critically and in the historical context of computing.

The discussion covers the rhetoric, or poetics, of these programs, as well as some of

what they highlight and what they hide about programming.

[7.2]  Hello World

Making the computer “speak,” and say hello, is often the first task done when learning

to program in an imperative programming language. (There are other idioms of pro-

gramming, but the imperative one considers, at a very high level, that programming

is giving instructions to the computer.) The “Hello World” program, on some levels,

frames the computer as obedient, autonomous, and able to communicate verbally,

albeit in a very simple way. It is also a simple, short program that, although it isn’t a

stunning display of computer power, is sufficient to show that a programming envi-

ronment has been set up and is running properly. This is perhaps the most essential

function of the “Hello World” program—ensuring that one’s programming environ-

ment works.

By now, it should be clear to you that Python and Jupyter Notebook work. Still, let’s

see “Hello World” in operation. Type in:

94	 Chapter 7

print('Hello World')↵

Very simple, and very good. Now, let’s take the opportunity provided by this very

simple program to figure out another way to run Python code. Python programs are

text files and can be composed and edited in any true text editor. Our next step is to

create a text file that simply has that single line in it.

You set up a text editor (if you didn’t have one handy already) before starting on

chapter 3, “Modifying a Program.” Open up a new file in your text editor and type in

the following:

print('Hello World')

Save this file as hi.py; the .py is a file extension, one that indicates this is a Python

program. It is conventional, helpful to the programmer, and helpful to any collabora-

tors or others who happen upon a program later, to use this file extension for Python

programs. Unfortunately, and confusingly, both Mac OS X and all recent Windows

operating systems hide these extensions when showing the contents of a folder in a

window. When you check via the command line, however, you’ll see the full file name,

with the extension. You’ll also need to refer to the file this way on the command line.

There are three approaches to dealing with this: you cannot care about the inconsis-

tency, you can reconfigure Mac OS X or Windows to display file extensions by chang-

ing the appropriate preferences, or (the solution I prefer) you can replace your current

operating system with GNU/Linux. That’s not a joke; I would consider it, even if you

don’t want to make a radical change of this sort right now, while you are starting to

study programming.

Save the file hi.py in the directory (or equivalently, folder) that you’ve created for

your work as you go through this book. On my system, a GNU/Linux system where

my username is nickm, the file ends up being /home/nickm/Desktop/explore/hi.py.

This full, long identifier for the file is called the pathname. Although it will be different

on Mac OS X, different GNU/Linux distributions, and Windows (which among other

things uses backslashes instead of slashes) and will be different depending upon one’s

user name, all systems will have a similar sort of pathname for this file after it has been

saved in your directory.

I use all-lowercase file names and directory names throughout this book for reasons

of consistency and convenience. If everything is entirely in lowercase, we never have

to worry about how a particular file name is capitalized when we are typing on the

command line. Also, all-lowercase names are slightly easier to type because it’s not

necessary to hold down Shift. This is not the only way to name files, and it’s even

Standard Starting Points	 95

in conflict with conventions for naming files in certain programming languages. As

you continue to work on larger projects, you should follow the standards of the lan-

guage you are using and of the collaboration in which you are participating. Initially,

though, it’s most important to realize that capitalization matters and that conventions

are established for good reasons. For instance, while I was writing this book, I created

the following four files on my system in the same directory:

hi.py hi.PY HI.py HI.PY

These are four distinct files; their names are obviously not much help in determining

what they hold and which one is the version I’m interested in. Consistently using all-

lowercase file names eliminates this one particular type of confusion.

Here is an operation of a few seconds that you should quickly undertake: using your

system’s graphical user interface, open your file viewer, open your home directory (on

Windows, the user folder is the more common term), and navigate to your equivalent

of the explore folder within that. You should see the file hi.py (or hi, if your system is

set to conceal extensions from you) presented in this familiar view.

Now, with reference to the instructions in 2.4, Find the Command Line, open a

terminal or command prompt so that we can do the same thing using this text-based

interface. If you are running Windows, be sure to open Anaconda Prompt (not the

default Command Prompt). The command-line interface to your computer can be used

to navigate through your file system (as you just did in your GUI); to program in many

different languages; to display, search through, and edit text files; to maintain and

update your operating system; to check email; and to connect to multiuser environ-

ments such as MUDs and MOOs. As a starting point, we’ll revisit how to use the com-

mand line to move through the file system and we’ll use it to run Python programs.

There are all sorts of ways that graphical applications signal what they are so that

you don’t confuse your video editor with your Web browser and start trying to use one

as the other. On the command line, the basic user interface is the shell, although some

programs take over the whole textual window and a have a distinctive text border. The

standard Python interpreter is such a program, but for our work we use the browser-

based Jupyter Notebook.

Just as the top window of your file viewer shows a particular folder’s contents, your

shell is also context-dependent. Your commands apply based on your current location

within the hierarchy of your computer’s file system. It’s possible to refer to any file at

any point, but if you’re interested in working with files in a particular directory, it’s

easiest to change directories so that you are “there” and can refer to the file you are inter-

ested in simply by typing hi.py instead of typing the full pathname. You probably will

96	 Chapter 7

want to run modified versions of this file, or other files in the same directory, many

times, so changing to the relevant directory once is efficient in terms of your typing.

It’s also less error-prone.

In what follows, I’ll assume that you have a folder on your desktop called explore.

GNU/Linux or Mac OS X: To determine your current directory, type pwd (for print

working directory) and press Enter/Return. (You need to press this key after any com-

mand entered in the terminal.) When you open a terminal, initially and in most cases,

the current directory should be your home directory. That’s /home/nickm for me; for

you it will probably be /home/ followed by your username. At any point, cd ~ fol-

lowed by Enter will change to your home directory. The ~ symbol is a shorthand for

this directory. From there, it’s easy to enter the Desktop directory (which contains what

you see on your desktop) by just typing cd Desktop. Next, entering the explore direc-

tory is done in the same sort of way: cd explore. Now, pwd will reveal your current

directory—hopefully the one you expect to be in (if not, redo these steps starting with

cd ~). Typing ls (list directory contents) will give you a text-based view, within the termi-

nal, of what you can also see by clicking on the explore folder on your desktop.

Here are the commands in order; you will have some sort of prompt, such as $ or

perhaps something longer, at the beginning of each line, but what I’ve listed ahead is

what you should type. I’ve added comments, beginning with #. You can type these in

if you like, but it’s not necessary; they have no effect on what the commands do. You

do need to press Enter after every line, of course.

cd ~

pwd # Tells you which directory you are currently in, doesn't "move" you.

cd Desktop

ls # Lists all files, including directories, on the desktop.

cd explore

ls # Lists all files in "explore."

Great—don’t close that terminal. Skip ahead past the next paragraph with instructions

for Windows users.

Windows: When you run cmd from the Start Menu’s Run option, a window will open

with a prompt that indicates your current location, your user directory. It will contain

a directory name similar to C:\Documents and Settings\Nick Montfort. I won’t repeat

this prompt (which will be different for you, anyway), but type the following to see the

contents of the current directory (using the dir command), change to your desktop,

Standard Starting Points	 97

see the contents of your desktop, change to the directory named “explore” within it,

and check the contents of that as well:

dir

cd Desktop

dir

cd explore

dir

The main difference here is that dir is used in Windows to see what’s in the current

directory, while ls is used in GNU/Linux and Mac OS X.

On all platforms: One special sort of directory indicator is ~ and another one is ..—

that is, two periods in a row. The ~ indicates your home directory or user folder. The

two dots mean parent directory, the directory that is hierarchically above (and that con-

tains) the current one. Try cd .. followed by ls (or on Windows, followed by dir) to

see that this first command moves you up, back to the desktop.

Now that the current directory is the one we named “explore,” we can run the

program that we’re interested in without typing some elaborate pathname such as

/home/nickm/Desktop/explore/hi.py or perhaps something even longer. It’s a simple

matter of entering:

python hi.py↵

This is the same python command that can be used by itself on the command line to

start the standard Python interpreter, although we are using the more powerful Jupyter

Notebook. Here, we add something to this command—an argument. This is an extra

piece of data for the python command to work with. Although the shell and Python are

not the same environment, this command-line argument is really quite similar to the

argument that “Double, Double” accepts within the interpreter, within Python. In the

case of “Double, Double,” the argument is the thing to be doubled, a sequence of some

sort, such as the list [-42, 0, 42]. The argument to python, on the other hand, is a file

name, the name of a Python program. Instead of starting an interactive session, Python

runs this program, presenting the output in the terminal window. Then we are back in

the shell, so commands such as cd ~, ls, and pwd can once again be used at this point.

Once you’ve typed some commands into the terminal, you may find that you wish

to issue a command again. For instance, you may wish to run the hi.py program again.

To do so, just press Up Arrow (↑) followed by Enter. Up Arrow brings the last command

that you used back onto the current line. You can use Backspace to edit it if you want,

98	 Chapter 7

but for now, Up Arrow and Enter will serve perfectly well to run the “Hello World” pro-

gram again. You can also move up and down through your history of commands with

the Up Arrow (↑) and Down Arrow (↓) keys. This means of navigating through previous

commands works in the GNU/Linux and Mac OS X shell, the Windows command line,

and even in the terminal-based Python interpreter, should you choose to use that at

some point.

Using your text editor, edit hi.py and replace “Hello World” with some other string—

keeping the quotations marks and everything else the same. Save the file (just overwrite

the previous version this time) and go back to the terminal. With Up Arrow and Enter,

you can run hi.py again. (If you’ve typed some command after python hi.py, you will

have to press Up Arrow more than once until you find the right line—or, of course, you

can retype the command.) This time, the file you run will be the new one, and you will

be presented with the new string.

At this point, without having discussed the specifics of programming much at all,

we already have two ways to run small, simple programs—in both cases, programs in

Python. We can open the interpreter and type programs in directly. (Not every pro-

gramming language allows this, but several others, such as Ruby and Lisp, do.) We can

also write a program in a text file, save it, and run it from the command line. (This is a

widespread way of writing programs, particularly simple ones.) In JavaScript work, we

edited text files in a very similar way, but to run the programs we opened our files, with

scripts embedded in HTML, in a Web browser. In working with Processing, as men-

tioned before, we will use that language’s elegant IDE rather than a text editor.

It takes some effort to gain familiarity with the command line. The Terminal or

Command Prompt is an entirely different way to access your computer—more power-

ful in some ways than the GUI and not based on all of the same principles or meta-

phors. Still, when you use it, you’re accessing the same file system, organized the same

way. And you can start with a few commands (ls, cd, python) and your existing under-

standing of how computers and their file systems work as you use the command line.

From there, you can learn enough to use the shell in ways that help you. This much

experience may not enthrall you with the power and flexibility of the command line,

but I hope it will at least make it a bit less mysterious.

While “Hello World” (with or without a comma or exclamation point, capitalized

variously) is the most famous first text to have the computer display, alternate tradi-

tions have arisen. At the Stanford Artificial Intelligence Lab (SAIL), a different text

was sometimes substituted: “Hello Sailor.” While helping establish a distinct body of

Stanford computing lore and customs, this was also a loaded phrase, evoking a sex-

ual proposition that was often thought to be used by prostitutes soliciting nautical

Standard Starting Points	 99

customers. It may also suggest a sexual solicitation by someone, male or female, who

is not a prostitute. If “Hello World” suggests the wonder of Miranda, finally in contact

with the amazing wide and inhabited environment, “Hello Sailor” suggests a very dif-

ferent, jaded perspective—and perhaps a campy one. The phrase is well-known enough

to have been used as a book title more than once, in the 1997 book “Hello, Sailor”:

Changing Perspectives of Japanese Prostitution: A Historical Analysis and the 2003 book

Hello Sailor! The Hidden History of Gay Life at Sea.

There are references to “Hello Sailor” and this sense of the phrase in creative com-

puting, too—particularly in the Infocom games in the Zork series, based on a mini-

computer game written from 1977 to 1979. The phrase occurs throughout the series,

perhaps most memorably in the black book found in Zork I, where the text begins by

admonishing the reader:

Oh ye who go about saying unto each other: “Hello sailor”:

Dost thou know the magnitude of thy sin before the gods?

The rest of the text describes the punishments that those who say this phrase will face,

which correspond to incidents in Odysseus’s journey. Zork shows a clear awareness of

this phrase’s sexual sense; it also pokes fun at those from SAIL, the Stanford lab where

Don Woods, using original code by Will Crowther, completed the canonical version of

Adventure (1977), a game also known as Colossal Cave. This game was the direct ances-

tor of and inspiration for Zork. Since it is necessary to say “hello, sailor” later in the Zork

series, in Zork III, in order to solve a puzzle, it would be difficult to consider that this

religious condemnation is meant seriously.

It’s easy to imagine other things that “Hello World” might say. A relatively innocu-

ous one, suggesting the movie Tron, is “Greetings, Program.” A phrase can easily be

imagined as part of a program of this sort. But it’s also easy to actually try out what it’s

like for the computer to say something else, and even this simple of an exercise can be

informative in several ways.

Trying to have the computer display “Buenos días,” for instance, will reveal whether

the programming environment you are using supports accented characters from the

Latin alphabet. It seems like it should, at this point in the twenty-first century, but

it might not. Trying to have the computer display the greeting “привéт” will reveal

whether one’s environment supports Cyrillic. (If you want to do this sort of test this

without changing your keyboard layout, you could paste in a Russian word, in Cyrillic,

from the Web.) Other characters, including ones from non-Western writing systems,

can be tested in this way too. With Unicode support, a wide number of glyphs may be

supported, but it may not be equally easy to type all of them. All characters are equal,

100	 Chapter 7

no doubt, but you will probably find that some are more equal than others in your

system.

Actually trying out different texts, rather than musing about what it would look like

for a computer program to produce those texts, can be a useful exercise in other ways.

It’s easy to imagine provocative, offensive, and subversive texts to use, but actually

putting these into a program, or trying to, can help the programmer discern which are

trivial or juvenile and which are truly charged. Can your computer provoke and offend

just by printing a string? Or does it lack the social standing to do so? Who will end up

bearing the blame (you, as the programmer, or the computer, as the one speaking) if

your program does say something offensive?

[Exercise 7-1]  Rewrite the Greeting

Replace the string “Hello World” with some other text and share your program with

others. This can be done by everyone in a computer-supplied classroom within a few

minutes; those studying alone can try out their alternative starter program on them-

selves and on friends familiar with “Hello World.” In doing this exercise, you also show

your ability to run text-file Python programs from the command line and your ability

to modify an existing Python program.

[7.3]  Temperature Conversion

Let’s return to trusty Jupyter Notebook for this next starter program. You can open up

a new notebook, as it shouldn’t be particularly important to refer to or rerun previous

code. By the way, even if you are writing a Python program in a text editor, it’s perfectly

fine—probably even a good idea—to have a Python interpreter of some sort open so

you can try out short code snippets and confirm your understanding of how Python

works. Running both a text editor and Jupyter Notebook is extremely unlikely to tax

your computing resources, but it is likely to make programming easier.

Converting between Fahrenheit and Celsius is often the first mathematical function

implemented by new programmers. A conversion program demonstrates how compu-

tation is general—how it can work on arbitrary values. But this is also a very practical

program, for an important reason: measurement systems are culturally situated and,

when people encounter a temperature display or a fixed value from a particular differ-

ent culture, it is necessary to convert from one scale to another.

The United States and a very small number of other places still use the Fahrenheit

scale. Let’s consider what some code to convert a “rest of world” Celsius measurement

Standard Starting Points	 101

into Fahrenheit should do—keeping in mind that this is our specification; it will not

work right away and should not be typed in right away:

to_f(27)

That sort of function would be fine, although we haven’t written the function yet. For

this particular value, the corresponding Fahrenheit temperature is 80.6 degrees, and

the number 80.6 would be an appropriate result. We would provide whatever Celsius

temperature as a numeric argument to this function, and the function would return

the converted value.

The Celsius measurement system, devised by astronomer Anders Celsius, seems

to be particularly well-calibrated in a culturally neutral way. The scale was set (until

the middle of the twentieth century) so that 0 is the freezing point of water and 100

is the boiling point. Water freezes and boils at different altitudes and pressures, so

sea level and mean barometric pressure was specified. This scale was first formulated

in 1742.

The Fahrenheit scale, which is slightly earlier, is also calibrated with regard to the

natural world, but somewhat differently. Daniel Gabriel Fahrenheit, the inventor of

the glass-contained mercury thermometer, devised the temperature scale that bears

his name. In 1724, he determined that 0 would be set to the temperature which was

thought, at the time, to be the coldest possible—the freezing point of brine, or specifi-

cally of a mixture of equal parts ice, water, and ammonium chloride, which stabilizes

at a particular temperature. The 32-degree point was the freezing point of water (mea-

sured by the same process, just without the ammonium chloride), and the 96-degree

point was set at the temperature of a healthy human body, or “blood-heat.” The scale

was later recalibrated, but this seems to be how it was set up initially. Although we

might consider a scale running from 0 to 100 as more obviously useful today, the

64 points between 32 degrees Fahrenheit and 96 degrees Fahrenheit were carefully

considered in the construction of the scale. Fahrenheit could simply determine the

midpoint of that interval, physically mark on glass, and then divide each segment

in half again. After six such divisions, he would have all the markings from 32 to

96 made.

The Fahrenheit scale is offset 32 degrees because the freezing point of water is 0°C

and 32°F. Between freezing and boiling, there are 180 degrees on the Fahrenheit scale

(from 32 to 212) and, of course, there are 100 on the Celsius scale. So, to convert, we

simply multiply the Celsius temperature by 180/100 and add 32. We can simplify this:

180/100 is 9/5. Thus, we need to multiply whatever value is given by 9/5 and then add

102	 Chapter 7

32 to that. Fill in this partially completed template, a sort of program-in-progress, so

that you have a function that works properly:

def to_f(c):

 return ______↵

Try this out on some values, such as the freezing point and boiling point of water and

some “room temperature” value.

Prove to yourself that this to_f() function allows us to convert any Celsius tem-

perature to Fahrenheit. The only complaint that could be raised against this function

is that it will convert values below absolute zero. We’ll deal with that complaint soon.

How about converting Fahrenheit values to Celsius? Let’s consider what our current

function does and get a bit algebraic on it. It computes ((9/5) × C) + 32 and returns that

value; that is, F = ((9/5) × C) + 32. To write to_c(), we just want to turn this around,

treating it as if it were an equation and solving for C. For a first step, subtract 32 from

both sides: F − 32 = (9/5) × C. Then, multiply both sides by (5/9), as in (5/9) × (F − 32)

= C. This tells us how to write the function we’re interested in:

def to_c(f):

 return (5/9) * (f-32)↵

This is a seemingly trivial bit of computation. However, it does a conversion that proves

difficult for many people to do quickly. This conversion can be quite useful when

one is in a different country. The conversions we’ve implemented are general; they

work on any temperature. And they’re packaged in functions so that instead of typing

everything again and again, and possibly making errors, we can simply type things like

to_f(25) and to_c(92).

Now, it seems that a clever and effective way to test our two programs would be to

see if to_f(to_c(25)) was (at least approximately) 25 and if to_c(to_f(90)) is 90 and

so on. We’d like to call one function on the other and vice versa. Try that out and see

how it works.

By the way, if we had tried to print our result instead of returning it, we couldn’t

use this method of testing the programs. Go ahead and replace the return ___ with

print(___) in both functions and press Shift-Enter to confirm the change you’ve

made. Now try, for instance:

to_f(to_c(25))↵

This is why we can’t have nice things if we write our functions to print() (i.e., to

visually display) values instead of using return so that other code can make use of the

Standard Starting Points	 103

result. Go ahead and change print back to return in both functions, following best

programming practice.

While Celsius certainly seems to be the more reasonable and well-grounded tem-

perature scale, the Fahrenheit scale has some advantages for everyday use. If a person is

wondering what temperature it is outside, it’s usually enough, in Fahrenheit, to know

that the temperature is in the twenties, thirties, forties, fifties, sixties, seventies, eight-

ies, or nineties. A single digit (the first one) captures enough to inform someone about

what to wear. In Celsius, that range extends from about -7 to 37, and it’s not very

helpful to know only the first digit of the temperature. So, awkwardly calibrated as the

Fahrenheit scale is, it arguably is better suited to at least some of our common experi-

ences of temperature, at least in this one way. One could make the argument that it’s

on a more human scale, good for distinguishing between temperatures that we usually

encounter.

The specifics of these temperature scales are somewhat interesting, but perhaps most

interesting is that they, like so many measurement systems, do not exist as mathemati-

cal abstractions. They are determined by convention, law, and national norms. As soon

as we encounter the power of the computer as a pure calculating machine and begin to

imagine its rarefied existence apart from matters of mere humanity—we are shown an

example of how computation can be used for mediating between the cultural norms of

different measurement systems. While we might want to imagine detached, abstract,

perfect and pure logic and mathematics, what we have instead is Daniel Gabriel Fahr-

enheit slapping a thermometer up against a healthy man’s armpit.

[7.4]  Lowering Temperature and Raising Errors

You have seen that syntax errors can arise as you’re writing programs. This Celsius-to-

Fahrenheit conversion task provides an opportunity to show how you can write your

code to raise errors when your program has detected that some mistake must have

been made. In this situation, we will have our temperature conversion program make

use of scientific results. Absolute zero, 0 Kelvin, is −273.15 degrees Celsius, or −459.67

degrees Fahrenheit. Any lower temperature value is nonsensical: it cannot correspond

to anything in the universe. If someone asks for a larger negative value than −273.15

to be converted from Celsius to Fahrenheit, or a larger negative value than −459.67 to

be converted from Fahrenheit to Celsius, it must be a mistake. Whatever number they

are using as an argument could represent something else—how much money someone

lost gambling, for instance—but it can’t be a temperature. So, we’ll have our program

explicitly say that the value provided is an erroneous one.

104	 Chapter 7

Let’s start by modifying the short Fahrenheit-to-Celsius program in Jupyter Note-

book. It looks like this to begin with:

def to_f(c):

 return ((9/5) * c) + 32

We’ll simply add one conditional statement:

def to_f(c):

 if c < -273.15:

 raise ValueError("Temperature value is below absolute zero.")

 return ((9/5) * c) + 32↵

If the condition is true, which happens whenever a bogus value is supplied, an error

will be raised (that’s the term for it) and execution of the program will stop right at that

point. The program will not proceed to the next line to return a value.

The specific type of error will not be a SyntaxError because there is no problem with

syntax here. Instead, it will be a ValueError, which you can use for any sort of inap-

propriate value—for instance, if somewhere in your program you found that a person

was indicated as working negative three part-time jobs. Because a string has been given

as an argument to ValueError, a helpful message will be produced if this error is raised.

Go ahead and try the new to_f() function with a few values, some valid and some

invalid.

Once you see how this works, fix your to_c() function that converts Fahrenheit

temperatures to Celsius. Add code so that this function raises the same error under the

correct circumstances. Test the function to make sure it works as it should, producing

an error when an error is appropriate.

[7.5]  Converting a Number to Its Sign

In the previous chapter, in 6.8, The Conditional, if, the function yesno() was intro-

duced. This short function returns True if its argument is 'yes', False if its argument

is 'no', and nothing otherwise. This function may not seem very similar to one that

does Fahrenheit-to-Celsius conversion, but it is also doing a type of conversion. At

least, it’s possible to think of this function as doing conversion. It maps one string to

True, another string to False, and all other strings to no return value at all.

Now we’ll write a slightly longer type of categorical conversion function. This

one will tell us the sign of a number: '+', '-', or '' for no sign at all. This one

Standard Starting Points	 105

should be a total function, which means that there is a return value for every pos-

sible number given as an argument. One of those return values will be the null string,

the string with zero characters, but that’s still a return value. Type this into Jupyter

Notebook:

def sign(num):

 answer = '?'

 if num > 0:

 answer = '+'

 if num < 0:

 answer = '-'

 if num == 0:

 answer = ''

 return answer↵

This program first assigns '?' to the variable answer. Then it goes through and

checks three conditions. If the argument is greater than 0, '+' replaces '?' as the value

of answer. Next, if the argument is less than 0, '-' is assigned instead of '?' as the

value of answer. Next, if the argument is equal to zero, the empty string is assigned to

replace '?' as the value of answer because zero has no sign. And finally, the function

returns the value of answer, whatever it is.

To try this function out:

sign(4)↵

sign(-20)↵

sign(0)↵

sign(1)↵

This program is written with a single return statement at the end, which is generally

considered good practice. It would be possible to do away with the variable answer

and simply return '+' or '-' or the null string at the points in this code when those

values are now assigned to answer in the code. This results in a program that is two

lines shorter. That result is not an incorrect program. Go ahead, try editing this version

down in this way and then seeing how it works. Because every case is covered (the argu-

ment is either going to be greater than zero, less than zero, or zero), there’s no problem

with this shorter version.

106	 Chapter 7

While you’re at it, also try out this version of the code, which seems to me to be an

improvement:

def sign(num):

 answer = '?'

 if num > 0:

 answer = '+'

 elif num < 0:

 answer = '-'

 else:

 answer = ''

 return answer↵

Notice that this version uses elif and another different keyword, else. The last branch

of a conditional can be indicated with else, and if it is, it will be taken when none of

the earlier conditions hold. It means “otherwise . . .”. The elif combines an else and

an if, indicating “otherwise, check to see if . . .”. In this case, the conditional tests to

see if the number is positive; only if it isn’t does it proceed to test whether it is nega-

tive, and then, if it isn’t negative either, without doing any additional tests (“other-

wise . . .”), proceeds to the case that applies when the number is zero.

This is a situation (one of many) where you can use good programming practices or

not, given the immediate problem at hand. Still, good practices can pay off in other

situations. To explain this, I’ll introduce a technique that will be discussed more fully

at the end of 8.3, Selecting a Slice: the way to get the last letter of a string. This is done

simply by placing [-1] after a string variable or after a value such as 'hello'. Try it in

Jupyter Notebook:

name = 'Paula'

name[-1]↵

'a'

word = 'hello'

word[-1]↵

'o'

'world'[-1]↵

'd'

Standard Starting Points	 107

Now consider another function, gender(), that takes a string as its argument. This

function determines what gender a particular name signifies, based on the special nam-

ing system used in the bifurcated, imaginary land of Binaria. In this country, which

uses the Latin alphabet, all boys are given names ending in o and all girls are given

names ending in a. According to the strict rules of Binaria, only two genders are pos-

sible. This is a land of twofold determinations. Here’s the function for you to type in:

def gender(name):

 if name[-1] == 'a':

 return 'female'

 if name[-1] == 'o':

 return 'male'↵

With that function defined, we can type:

gender('Apollo')↵

That invokes the function, and Jupyter Notebook tells us what its return value is. To

update this function with a new version after we’ve changed something, we can simply

copy the new version from the text file and paste it in.

If you try this function out on “Francisco,” “Clara,” “Gonzalo,” “Ola,” “Roberto,”

and “Vanessa,” you may be perfectly satisfied with it—given the distinction that it is

supposed to make. But perhaps Binaria has some immigration from places such as the

United States, or requires visas for visitors, or something like that. Because of that, a

list of names in Binaria may at times contain some names that do not end in a or o as

all native names do. For instance, let’s say that I applied for a Binarian visa and did not

enter my first name as something like “Nicko” or “Nicka.” If you try gender('Nick'),

you’ll see that the function, with this argument, returns nothing at all. This could

cause problems for me if I need to use the bathroom.

I’m trying here to introduce an issue that is serious, although with a made-up coun-

try and a situation that may seem silly. Computers have been used to formalize and

maintain traditional categories, including binary gender distinctions, ever since com-

puters were invented. While this might sound like a joke when it’s part of a contrived

example like this, people who do not identify as one of the two standard genders

concretely suffer from these sorts of binary classifications all the time. This isn’t a new

issue; there is a long global history of people who don’t wish to be thought of as male

or female. This matter has come to broader public attention in the United States and

other countries recently, however, and more people are open about their discomfort

108	 Chapter 7

with or opposition to the binary system of gender. Understanding how computer pro-

grams categorize, and how to build new and different systems, can have positive social

potential when a classification issue like this one is involved.

We will try to make a tiny improvement, at least. Here’s another version of the func-

tion, similar in structure to sign(). This one still follows the rigid rules of Binaria but

is potentially improved in some ways:

def gender(name):

 indicated = '?'

 if name[-1] == 'a':

 indicated = 'female'

 if name[-1] == 'o':

 indicated = 'male'

 return indicated↵

At the cost of just a few additional characters, this function is a bit more honest about

what it is doing. If any string is passed in that doesn’t end in an o or an a, the function

now returns a question mark to indicate that it cannot determine the gender of the

name using its rule system.

There’s also a new variable in this longer function, one named indicated. This is

hardly a clear and well-commented function—it doesn’t actually have any comments

at all—but thanks to this variable and its name, there is at least more of a clue that the

function is figuring out the gender indicated by the name, according to Binaria’s tradi-

tions. This may not be the same as the gender actually assigned to an individual by

society or the gender an individual might choose in terms of self-presentation.

[Exercise 7-2]  A Conversion Experience

Create another simple function that converts between units of measurement of any

sort. They can be units of practical importance if you like. They might be culinary units

such as US tablespoons and Australian tablespoons (which, indeed, are different). They

might be computational units such as the gigabyte (when defined as one billion bytes)

and the other gigabyte, aka the gibibyte (10243 bytes, which is 1,073,741,824 bytes).

Or they might be more fanciful units, such as human years and dog years. Instead of

using print() to display the result when your function is finished, return it. This

should be a very simple and short program that works much as to_c() does. Work

in Jupyter Notebook to develop and test your function. Then, as a final step, place

Standard Starting Points	 109

your function in a text file with some test cases at the bottom; those test cases should

involve calling your function with different arguments and using print() to display

the result.

[Exercise 7-3]  Categorical, Imperative

Create another simple function, along the lines of sign() and gender(), that classifies

its argument into one of a small number of categories, such as three. You are encour-

aged to select categories creatively and are required to keep the program very short (ten

lines or less). Try to determine some interesting categories that can be easily discerned

by a computer, based on what you know about computation so far. For instance, while

it may be interesting to distinguish prime numbers and composite numbers, we have

not discussed (and are not going to discuss, in this book) how to determine whether

or not a number is prime. So it would probably be a better idea to determine a simpler

type of categorization, perhaps based on whether a value is, for instance, equal to some

meaningful value or not or whether it is greater than such a value. You could examine

words using len(), to see if they are short, of medium length, or long, or you could

determine whether numbers are even or odd. If you find yourself writing an elaborate

test, choose something simpler to categorize!

[7.6]  The Factorial

Computing the factorial is a reasonably common thing to do when starting to learn

various programming languages.

The factorial of a number n, written n!, describes how many ways n item can be

arranged in a sequence. In other words, n! is the number of permutations of n. For

instance, 1! is the number of ways that a single item can be arranged—only one way,

of course, so 1! is 1. Next, 2! is how many ways two items can be arranged: they can

be set up as 12 or 21, two different ways. For 3!, we can pick any of the three items for

the first spot, either of the two remaining items for the second spot, and then we don’t

really have a choice for the third spot, which will have to hold the one remaining item.

So 3! is 3 × 2 × 1 = 6.

In fact, n! can always be computed as n multiplied by n-1 multiplied by n-2 all the

way down to one.

Knowing this, let’s write a function, using iteration, that will compute the facto-

rial of any number n that is greater than or equal to 1. First, let’s see how we can get

a sequence that begins with 1 and continues 2, 3, 4, up to whatever number we like.

110	 Chapter 7

Try typing the following in Jupyter Notebook:

list(range(5))↵

The outer function, list(), is a built-in function that makes a range into a list; it con-

verts its argument to the list type. Without getting into unnecessary detail, in Python

3, we need to use list() to see all the elements that range(5) produces, all at once.

You’ll see that this returns [0, 1, 2, 3, 4], a list that is almost exactly what we are

looking for—but not quite. This list starts at 0 and goes to 4. This is quite handy if we’re

trying to go through another list by index, because, as we’ll see soon, a list with five

elements begins with index 0 and ends with index 4. However, it’s not what is needed

to compute the factorial of 5. In that case, we need to compute 1 × 2 × 3 × 4 × 5, not 0

× 1 × 2 × 3 × 4.

This range can be specified with two numbers instead of one, a starting point and

the number before which the sequence will stop. Notice that the following use of range

does the same thing as the previous one; it’s just a way of rephrasing it:

list(range(0, 5))↵

Now, let’s have the range begin at 1 and go up to (but not include) 6:

list(range(1, 6))↵

That’s the list we’re looking for. This is a great time to experiment with range().

Think of any consecutive sequence of integers, such as [15, 16, 17]. (A short sequence

is fine.) What first number and second number for range() will produce the sequence

that you have in mind? Try out a few different uses of range() so you get a feel for how

the first argument is the starting point and the second argument is the first value that

doesn’t appear.

Now, let’s consider how a factorial function will work. It needs to multiply together

every number in the range that begins with 1 and ends with n. So, we start by assigning

the variable answer the value 1 and we keep accumulating the answer in this variable,

multiplying by each number in turn and storing the result there. Finally, when we’ve

done all the necessary multiplication, we return the answer.

Let’s first do this process ourselves, without constructing a function. We’ll compute

the factorial of 5. So that we know what to expect, consider that 5 × 4 × 3 × 2 × 1 is

(5 × 4) × (3 × 2), which is 20 × 6, which is 120. If we think about it deliberately in this

sort of way, we don’t need a computer to find the result in this case, but we have to

check that our method works using values we can compute by ourselves. Try this in

the interpreter:

Standard Starting Points	 111

answer = 1

for num in range(1, 6):

 answer = answer * num

 print(answer) # Display the current value

answer↵

On the first line, we’re just assigning the variable answer the value 1. The next line

loops through our sequence from above: [1, 2, 3, 4, 5]. It multiplies answer by each

value in turn. So on the first iteration, answer is 1. On the second, it’s 2. On the third,

it’s 6. On the fourth, it’s 24. To be able to see this visually, I have included another line

of code that is indented and thus within the loop, the print() function. This simply

provides an informative display, showing the current value of answer during each pass

through the loop. Be aware that print() is not returning a value; it’s just giving us a sort

of status update so we can watch the program’s progress as it proceeds. After the fifth

and last iteration, the answer is five times the previous amount, 24, which ends up being

120, the desired result. That value is actually returned, rather than just being displayed.

As I see it, this is another type of “accumulating,” some sorts of which we have seen

before. Instead of adding at each step, the code multiplies at each step, but is similarly

working to build up the final answer.

All that remains is to encapsulate this code in a function and generalize it so that

instead of just working for the value 5, it works for any positive integer. Now that the

code is working, I will remove the invocation of print() so as not to clutter things up.

Here is most of how to encapsulate this process in a function:

def factorial(n):

 answer = 1

 for num in _____:

 answer = answer * num

 return answer↵

The blank is where you will need to specify the range so that the iteration begins with 1

and goes up to (and includes) the value of n. Once you determine that range and place

it there, you should have a working factorial function. Go ahead and figure out what

goes in the blank and place it there.

A fun fact: your function actually works not only for 1 and all larger integers, but

also for 0. The idea of 0! may seem a bit perplexing at first, but it’s defined in the same

way that the factorial of other values is defined: it’s the number of different ways that

112	 Chapter 7

zero elements can be arranged in a sequence. How many ways is that? It’s the number

of ways you can place zero books on a shelf: just one way. So, given that definition,

consider what happens when one invokes factorial(0). If the factorial function is

given 0 as an argument, the answer should initially be assigned the value 1, the func-

tion should go through the for loop zero times, and the answer that results at the end

should be simply the original 1.

We now have a good factorial function that will work with any whole number. As a

next step, we’ll write a different function to do the same thing.

Some people who teach programming hold that it’s a bad idea, very early on, to

show multiple ways of solving the same problem. I find it important for both artists

and humanists to understand that different code-level choices can be made to accom-

plish the same thing. The recently established fields of critical code studies, software

studies, and platform studies rely on understanding how there are different implemen-

tations for what is operationally the same program. These code-level differences have

many sorts of cultural importance. And as someone who seeks to think and explore

using code, it’s important to see how one’s explorations involve choices and expressiv-

ity, how they aren’t simply rote mappings from a problem to a single solution.

So let’s consider a different approach to the factorial function. I sketched out how

the factorial of n can be computed by multiplying all the values between 1 and n. But

there is another way of thinking of this function. We could also say that the factorial

of 0 is 1 (as noted in the fun fact earlier), and the factorial of every larger number n is n

× (n - 1)!. That is, we’ll say that 5! is 5 × 4!, and 4! is 4 × 3!, and so on. This is really just

another consistent way of phrasing the definition we’ve already seen.

To keep things straight, we’ll call our new function fact().

def fact(n):

 if n == 0:

 return 1

 else:

 return n * fact(n-1)↵

This function is quite different. It does not iterate; there is no for loop. Instead, there’s

a single conditional statement. In the first case, if n is 0, the function returns 1, the

correct answer.

In the second case, the function returns n multiplied by whatever the value of

(n - 1)! is. That value is computed using recursion: the function calls itself with a differ-

ent argument, one that is always getting smaller.

Standard Starting Points	 113

If it seems odd for a function to call itself, why didn’t it seem odd that we defined n!,

just a moment ago, as n × (n - 1)!—that is, that our earlier definition of factorial was in

terms of the factorial function itself? In our mathematical definition and in our func-

tion, we are always checking to see what the factorial of a smaller number is. If we start

with a positive number, we’ll eventually reach zero, which has a defined value. And

at each step down, we’re multiplying by the current value of n, so we reconstruct the

expression n × (n - 1) × (n - 2), which we got earlier using iteration.

You should note that it’s very important to ensure that this process eventually stops!

If we didn’t have the first part of the conditional, checking to see if we’ve reached 0, we

would end up trying to build an expression with an infinite amount of terms. Trying

to compute 3! would involve trying to compute 3 × 2 × 1 × 0 × −1 × −2 . . . and so on,

forever. You can see this catastrophe happen (don’t worry, it won’t destroy your com-

puter) by typing in the following and testing it out in Jupyter Notebook. Type in the

following and test your new function on a number such as 3 or 5:

def factfail(n):

 return n * factfail(n-1)↵

Once you understand the basics about what recursion is, the error message is fairly

informative, isn’t it? Here you’ll see a twist on the semantic error, the non-intentional

program. The function is entirely valid, but produces a runtime error as it exhausts

your computer’s resources. It can’t return any answer at all, even the wrong one.

The recursive way of computing factorials will probably present itself as the “obvi-

ous” one to those who prefer to program in a functional style, using languages such as

Lisp and Haskell. The iterative way is perhaps better suited to those who prefer impera-

tive programming, which is often done in C, Python, and Java. There are some low-

level advantages and disadvantages to each, but for thinking, sketching, and exploring,

the important thing to understand is that both ways of thinking about problems do

indeed exist, and both are useful.

[Exercise 7-4]  Negative Factorial Fix

You may have noticed that if you give a negative argument to factorial(), the result

will be 1, which is not the right answer. The factorial of a negative number, like the

result of dividing by zero, is undefined. Elaborate the conditional statement so that if

a number less than 0 is given as an argument, factorial() will raise a ValueError as

described in 7.4, Lowering Temperature and Raising Errors.

Having done this, turn to fact(). This function will actually crash if given a nega-

tive argument, for reasons just explained in discussing factfail(): once this function

114	 Chapter 7

ends up “below” the base case, the limit of 0, it will keep subtracting one from that

argument and calling itself until memory has been exhausted. Add a conditional state-

ment so that if a number less than 0 is given as an argument, fact() will also raise

ValueError.

[Exercise 7-5]  Factorial Mash-Up

As written, fact() calls itself and factorial() does not call any other function. Could

fact() be written to call factorial() instead of itself? Would the modified version of

fact() correctly compute factorials? Why or why not, exactly? Write a statement about

why you expect this modified function to work or to break. Then, change fact() so

that it invokes factorial() rather than itself and see what happens. Were you right?

How much testing did you need to do to determine whether or not the new version

of fact() works? This exercise is not meant to show you that it’s a good idea to write

two different implementations of the same operation and then hook them up to each

other. That’s bad programming practice! This, however, is an exercise in understanding

abstraction and the interface to functions.

[7.7]  “Double, Double” Again

The alternative “starter program” presented in this book is double(), which was devel-

oped to serve as an example of several computational fundamentals: functions, iter-

ation, and polymorphism. It is meant to pack a lot of the abstraction that can be

accomplished by computer programming into a few lines of code.

Whereas “Hello World” is a stand-alone program that can run and produce output

by itself, “Double, Double” is a function, similar to Celsius-to-Fahrenheit conversion

and the factorial function. It maps input values to output values. It works on sequences

of data but does not perform a culturally meaningful translation, as the temperature

conversion program does. The factorial function probably provides a more “natural”

example of recursion versus iteration, although double() can also be implemented

recursively. Let’s see how.

To display twice the value of every element of a list, we mentioned that we could

simply have the program go through each element (iteratively, using a for loop) and

print twice the value of each one. Of course, that works.

But we can also think about a list differently. Let’s consider the length of the list: this

length is either 0 or some number greater than 0. If the length is 0, then we have a list

with no contents, the empty list. We have zero elements to double. The result should

be the same thing we started with, the empty list.

Standard Starting Points	 115

If the length is greater than 0, then the list must have a first element followed by

what we’ll call the rest of the list. (Even if the list is only one element long, it still

has a first element and a rest of the list. In this case, the “rest” is the empty list.)

Now, the doubled list that we seek (a list with twice the value of each element) can be

determined by adding together twice the first element and the double of the rest of

the list.

The code for this is:

def doubler(sequence):

 if len(sequence) == 0:

 return []

 else:

 return [2 * sequence[0]] + doubler(sequence[1:])

Is this perhaps less clear than the previous version, double()? Because this is the first

time we’ve used [0] to split off the first element of a list, and because [1:] may seem

like a rather cryptic way to get the rest of the list, this version is probably not very clear

yet. Whatever you think about this matter, though, both of these functions are reason-

able expressions of two different ways of thinking about, and solving, the problem of

doubling every element of a list. They both work, and they show one iterative and one

recursive approach to a problem.

[Free Project 7-1]  Modify “Stochastic Texts”

Do this project at least three (3) times, developing different modifications. When I

invited you to modify JavaScript programs, one of them was a classic, Theo Lutz’s “Sto-

chastic Texts” from 1959. I have made this program available, in reimplemented form,

not only in JavaScript but also in Python. Find it here and download it:

nickm.com/memslam/stochastic_texts.py

Open the file in a text editor. Then modify it, as you did when you modified that

JavaScript program, to make a text generator of your own that is based on this one.

There are two goals here: First, you should get a bit more experience working with

Python programs as plain old text files, using a text editor and running them from the

command line. Second, you should try to make modifications to this program that are

different in significant ways from any you may have already done in JavaScript. Try

shifting to a different tone, or perhaps making the generated text more coherent or

more uncanny.

http://nickm.com/memslam/stochastic_texts.py

116	 Chapter 7

[Free Project 7-2]  Modify and Improve Starter Programs

Do this project at least three (3) times, using two (2) different starter programs. Use

one of this chapter’s starter programs as a basis for your work and develop a modified

program that you believe improves on the version presented here. As with the original

program, the program you create should be simple and should do one simple thing.

You can change the type of conversion done by the conversion program, however, or

have the factorial calculator do something similar, but not exactly the same, when

given a whole number argument.

[Free Project 7-3]  Write a Starter Program

Do this project at least two (2) times with different audiences in mind. Create an alter-

native starter program of similar simplicity to the four discussed in this chapter, this

time starting from scratch and with your own idea. The program you create should do

only one simple thing. In a short paragraph, you should justify this program as one

that is good at being an initial introduction to programming and computation.

For instance, there was a 1994 Saturday Night Live skit, “Total Bastard Airlines,” that

presented the scene of passengers exiting an airplane. As the passengers left, members

of the flight crew repeatedly said, “Buh-bye!” The actors playing passengers ran around

the set, getting on the plane again and exiting the plane again, so that the flight crew

was standing there and saying, apparently without end, “Buh-bye.”

A suitable project could be a program that says—actually, displays on the screen,

using print()—“Buh-bye” some very large number of times, using iteration. For those

who want a “stretch goal,” getting a program to say “Buh-bye” an unbounded number

of times can be done but would require some additional exploration of concepts not

yet introduced. The eternal “Buh-bye” program, with a justification for why it is a

valuable introduction to computing, would be a fine free project that involves taking a

step beyond what is outlined in this chapter. If you do it, you still need to justify it as

a good starter program!

Whether you pursue this sort of project or another, remember that the goal is not to

write an elaborate program, but to write a very simple new program that can be justified

as a good introduction to programming and that does something computationally dif-

ferent from the programs introduced so far.

[Exercise 7-6]  Critique My Starter Programs

I provided three at least somewhat nonstandard starter programs, or ways of learning

about computing: double() initially, in 5.2, Type In the Function, and then tax() and

mean() in chapter 6. These are functions that don’t do anything unless they are called,

Standard Starting Points	 117

rather than entire stand-alone programs—but they serve to introduce computing, all

the same.

Offer a critique of these. A critique doesn’t require you to be negative, although you

can be negative. To critique something, you just need to be discerning and conduct

an inquiry. What does the program highlight about computing? What does it hide

or obscure? Does it welcome people from different backgrounds to computing? Does

it appeal more to those interested in some media, or particular studies and practices,

and less to those interested in others? I was, of course, aware of some of the cultural

implications of the standard starter programs, but how do the three I offered reflect

cultural perspectives on computing? Having just developed your own starter program,

you should have some interesting thoughts about this. Feel free to deliver your critique

publicly, on your blog or favorite social media platform, and to invite others to the

conversation.

Of course, the previous free project should have already given you the opportunity

to deliver one type of critique, in code.

[7.8]  Essential Concepts

[Concept 7-1]  Computing Is Cultural

It would be so easy if we could just completely forget about the social, political, and cul-

tural world when we think about computing and programming. However, the choice

of what to program and the way in which programs work have significant cultural

dimensions, just as architecture, design, art, and writing do. Be aware of the implica-

tions of this for one’s work as an exploratory programmer—choosing what to explore,

how to explore it, and whether or not you wish to allow others to use your code and

build on your work.

[Concept 7-2]  You Too Can Raise Errors

Python produces several sorts of informative errors on its own. You can have code that

you write produce its own errors—for instance, to indicate when a nonsensical value

has been provided as an argument.

[Concept 7-3]  The Conditional Can Categorize

Having seen that the if statement allows for something to happen only if a particular

condition holds, you should understand at this point how to sort data into any number

of categories and how to specify a default value if the data doesn’t fit into any of the

categories.

118	 Chapter 7

[Concept 7-4]  Iteration and Recursion Can Both Work

Computing the factorial has given us the opportunity to see that some problems can

be solved either iteratively or recursively. There will be other examples of this provided

later, but you should grasp some of the basics of recursion at this point. Understand,

for instance, that recursion involves formulating a solution as some partial answer

combined with another application of the process. And understand that functions

can in general call any functions they like—other functions, for instance, but also

themselves.

[8]  Text I: Strings and Their Slices

[8.1]

In this chapter, as in the next one, we consider computation on text that can be done

with the default, core installation of Python—without having any additional librar-

ies or modules downloaded and installed. This chapter covers the simplest ways of

dealing with text, using strings and slices. In the next chapter, the powerful concept

of the regular expression is introduced. Later, in chapter 15, “Text III: Advanced Text

Processing,” the textual work is based on TextBlob, an additional library that provides

several sophisticated capabilities for text processing and lexical work.

Those complex capabilities are great, but it’s possible to get a very good start and

learn about the computational manipulation of text simply using the standard, built-in

capabilities of Python, focusing on just strings and slices. Knowing about the basics is

important for working with additional libraries and frameworks, too.

[8.2]  Strings, Indexing, Slicing

We’ve seen already that one of the built-in data types in Python, and a very useful one,

is the string. The string is a sequence of characters, indicated with surrounding quota-

tion marks—either single or double, as long as both starting and ending quotation

marks are the same. Examples of strings include 'hello world' and '2112'. It’s fine for

a string to have no characters in it—''—and in that case it is known as the null string.

(We saw this string in 7.5, Converting a Number to Its Sign.) Check out the lengths of

the strings just mentioned using the len() function:

len('hello world')↵

len('2112')↵

len('')↵

120	 Chapter 8

These sorts of string values can also be assigned to variables, of course:

hi = 'hello world'↵

len(hi)↵

In Python, you can use double quotes instead of single quotes, as I mentioned:

len("hello world")↵

This is convenient in some cases—for instance, if you want to define this string: "I
can't go on." If you use double quotes on the outside, it’s allowable to have single

quotes (apostrophes) inside them. There are ways to include the apostrophe/single

quote without using double quotes, however. A Python programmer is never forced to

use one or the other. I use single quotes to surround strings, mainly because they are

slightly easier to type: it’s not necessary to hold down the Shift key.

Python is offering some flexibility here, providing an option that makes it a bit

easier to program. You might consider that both American-style and British-style quo-

tation, with different nesting of single and double quotation marks, is allowed. But

this doesn’t mean that Python is completely flexible and that every style of quotation

will work. Python is still a formal language in which there are some acceptable ways to

quote strings and other ways that aren’t acceptable. You don’t need to try this one, but

if you were to bust out some guillemets and type something like this:

"bonjour monde"↵

you would get an error message rather than defining a string. It doesn’t matter that

this is a culturally and linguistically acceptable way to quote things; it isn’t a way that

works in Python. Python’s flexibility is only that which is defined in the programming

language.

Notice that strings are not numbers. They are sequences of characters. As discussed

with regard to types, integers don’t have a length in Python:

len(2112)↵

Here we tried to find the length of a number, an integer. But that just isn’t a sensible

operation according to Python. The len() function tells us how many elements there

are in a sequence, such as a string, which is a sequence of characters. It isn’t meant to

tell us anything about numbers—and indeed, 2112, the number that is 1056 * 2, does

not have a length. But if we treat the four digits of the number as a text, we can find

the length of the string '2112' using the length() function. The integer 2112 does

not have a length in characters, but the sequence of characters '2112', the title of an

album by Rush, does.

Text I	 121

Strings can be thousands, or tens of thousands, of characters long, or even longer.

An entire file can easily be read into a string; this is commonly done, and we’ll do this

later as we analyze and manipulate larger texts.

It’s often the case that we want to examine or work with a part of a string. For

instance, we might want to check the first letter to see if it is capitalized. Or we might

be interested in how the first half of a string differs from the last half. In many cases

we could accomplish this by finding a substring, although in Python it is often more

convenient to take a slice. The details of the differences between these two can be left

for later; for now, you should know that you’ll find a slice very appealing, even if you

don’t like pizza. In Python, we can also easily access one character of a string using its

index—its position in the string.

The first character of a string is number zero: the index of it is 0. When you are

counting limes at a market, you probably don’t begin counting “zero, one, two . . .”.

But there are sound reasons to begin at zero when it comes to the characters in a string.

Character number zero is the character that is zero away from the beginning of the

string. The index, in this case, is indicating how far you need to go (starting at the

[Figure 8-1]
The index of the first element of a list is 0. That’s how many steps are needed to get there from the

starting point. Here, ‘s’ has index 0, ‘t’ has index 1, ‘e’ has index 2, and ‘p’ has index 3.

122	 Chapter 8

beginning of the string) to get to the character in question. This can be thought of as

an offset. How far to go to get to the first character? Zero steps! You’re already there.

How far to get to the second character? One step gets you there. So that second charac-

ter, one place away from the beginning, is character one, with index 1. Try this to see:

'hello'[0]↵

'hello'[1]↵

'hello'[2]↵

'hello'[3]↵

'hello'[4]↵

While we’re at it, we might as well try:

'hello'[5]↵

There are only five characters—numbered zero through four—so it shouldn’t be a sur-

prise that asking for character number five produces an error. Does the error message

make sense?

[8.3]  Selecting a Slice

To pick out one character, it’s easy to just use the index. We can get any number of

characters by taking a slice. For instance, the first three characters of a string correspond

to the slice beginning at 0 and ending at (going up to, but not including) 3:

'hello world'[0:3]↵

'2112'[0:3]↵

''[0:3]↵

Now, what happened with that last example? The null string, which has no characters,

of course doesn’t have characters zero, one, and two. Shouldn’t the Python interpreter

have given us an error?

Actually, slicing a string, unlike obtaining a character by index, is a forgiving opera-

tion. Python will provide as many characters as it can, but if it runs out, or if there are

no characters in the specified range, whatever is found in the slice will be returned—or

the null string will be returned, if there’s nothing there at all—and no error will be

produced.

Notice that it’s possible to get a string’s first character by slicing:

'hello'[0:1]↵

Text I	 123

Why would one do this, when it takes two fewer keystrokes to just get the character

using its index? Try the following:

''[0]↵

''[0:1]↵

The second one doesn’t produce an error and instead provides the null string as a

result. A slice gives the specified characters if they’re there and as many of those char-

acters as possible if they aren’t. In this case, it’s a way of requesting the first character if

there is a first character and '' otherwise.

Check out the slice with the first 500 characters of 'hello world', for instance:

'hello world'[0:500]↵

And check out the slice that holds characters 450 to 500 of that string:

'hello world'[450:500]↵

It’s possible to leave out the first or last number when slicing a string, if you want to

indicate “from the beginning” or “up to the end.” To find the first three characters, for

instance, one can also type:

'hello world'[:3]↵

And to find everything except the first character:

'hello world'[1:]↵

So, for instance, try:

'hello world'[:5]↵

'hello world'[6:]↵

Now, we can do something to just one part of a string. Let’s say we want to just

make the first letter of 'hello world' uppercase. To do this, we can apply the upper()

method to just the first character, then append a slice that corresponds to the rest of

the string. (A method is very much like a function, but attached to something, in this

case a string—see the glossary for some details.) Give it a try:

greeting = 'hello world'↵

greeting[0].upper() + greeting[1:]↵

You can actually provide yet another number, beyond the starting and ending

points, when slicing strings. This third number, or argument, is much less frequently

used, but it’s there for those who wish to use it, and it’s the step. So if you want to slice

124	 Chapter 8

up 'abcdefgh' by starting at the beginning (character 0) and going to the end (up to,

but not including, character 9), but skipping ahead each time by two, that is done as

follows:

'abcdefgh'[0:9:2]↵

It turns out that both the first argument (starting point) and the second argument (end

point) can be omitted, and if they are, the slicing will start at the very beginning and

go to the very end. Because we can leave out the beginning and the end, the same thing

just done can be accomplished as follows:

'abcdefgh'[::2]↵

Similarly, if you’d like to get all the even digits:

'0123456789'[::2]↵

This may seem like an esoteric way to slice a string. It certainly seems that way to

me, even though this third number has its uses. I’m not asking you to internalize all of

this, including the third step argument, right now. I’m just showing that there is more

to the slice than the start and end point. A nice thing about Python is that you can

slice strings just by using the first two arguments—and in many, many, cases, that will

be enough. But if you want to take every other character, or every third character, for

some reason, you can add the step argument to what you already know and allow your

program to do more. There are not only optional arguments, but also ones you don’t

need to worry about until the need arises.

Finally, there is an easy way to get the last character, or the last several characters,

of a string, without even determining the length of the string. The last character is at

index -1, the second-to-last at -2, and so on. These negative numbers can be used in

slicing.

'hello world'[-1]↵

'hello world'[-1:]↵

'hello world'[-5]↵

'hello world'[-5:]↵

[8.4]  Counting Double Letters

Before moving on, we can put our knowledge of slices to use. We can write a function

that counts double letters in a string. Type in this string, all on one line:

Text I	 125

wyatt = 'They flee from me that sometime did me seek / With naked foot, stalking in my chamber.'↵

These two lines aren’t spelled this way in their original printing, but we’ll use this ver-

sion. And, although it doesn’t matter for this specific input, we want to consider capital

and lowercase letters to be the same, so that if our string begins with “Oolong” we will

correctly identify the first two characters as a double letter. To accomplish this, just use

the method that returns an all-lowercase version of a string, lower():

'HELLO World'.lower()↵

original = 'Burma Shave'

lowercase = original.lower()

lowercase↵

original↵

In typing the preceding code and observing the result, you should see that lower()

does not change the value of the original string; it returns a new all-lowercase string. If

we like, however, we can overwrite the original value with the lowercased string:

wyatt = wyatt.lower()

wyatt↵

Let’s start our double-letter-detection process with an even simpler version of the rather

simple function we’re trying to write. Let’s iterate through wyatt and simply find all

the occurrences of a double e. To do this, our program should go through the string

character by character, and at each point, it should consider the next two characters

and check to see if the string containing them is 'ee'. To get going, we won’t even

write a function, although we will do that eventually. For now, we’ll just hard-code our

string, stored in the variable wyatt, into a loop.

Here’s how to iterate through the string a character at a time:

for c in wyatt:

 print(c)↵

wyatt is a sequence (and specifically a string), and this code iterates through it one

element (one character) at a time. The print() function shows us what value is con-

tained in c at each step. Remember, it’s just displaying this value for us, not returning

each value.

Here is some code that does the same thing; type it in and run it to confirm that

it does:

126	 Chapter 8

for i in range(len(wyatt)):

 print(wyatt[i])↵

Let’s modify this slightly to see what’s happening:

for i in range(len(wyatt)):

 print(i, wyatt[i])↵

We have i, an integer, before a comma and wyatt[i], a character, after it. You can

print any sequence of values by separating them with commas, which cause a space to

be printed between them. For a quick peek at what values are, this works well.

Having run this, you can more clearly see that the extra variable, i, which has been

introduced in this modified code, is being used as an index. It starts at 0 and is incre-

mented until it reaches 85, because that sequence is what is produced by the range

operator, as you can see:

list(range(len(wyatt)))↵

The string wyatt is eighty-six characters long:

len(wyatt)↵

So range(len(wyatt)) counts out the eighty-six characters, starting at the first one at

offset 0 and ending at the last one at offset 85. wyatt[i] then retrieves the appropriate

character from the string.

That’s great—we had something simple that worked, and now we exchanged it for

something more complex that works. There is a point to making the code more com-

plex, though. Our first, simple example could only access one character at a time, and

we are interested in checking two characters at a time. The complexity we added allows

us to do that; it’s now simple to take two-character slices of the string rather than just

examining a character at a time.

for i in range(len(wyatt)):

 print (wyatt[i:i+2])↵

The first problem (counting every case in which a double e is found) is almost solved;

we can now identify each pair of letters. We just need to have the program count how

many of them are 'ee'. Let’s add a counter to keep track of what we find, and let’s add

one to it whenever we find a double e.

pairs = 0

for i in range(len(wyatt)):

Text I	 127

 if wyatt[i:i+2] == 'ee':

 pairs = pairs + 1↵

After running this code, check the value of pairs to ensure that it’s a sensible one:

pairs↵

Now we have code (not yet bundled into a function) that will count how many

times there are two consecutive e’s. But we are looking to count all double letters,

including the double o in foot. We need to replace the condition wyatt[i:i+2] ==
'ee' with an appropriate condition. What we really want to test is whether the ith

character, character number i, is the same as character number i+1. Let’s try the most

straightforward way of testing that:

pairs = 0

for i in range(len(wyatt)):

 if wyatt[i] == wyatt[i+1]:

 pairs = pairs + 1↵

If you type this in as it is printed, you’ll get the same error I got. But check pairs again

to see what its value is:

pairs↵

Interesting: pairs has the correct value, but this code resulted in a “string index out

of range” error. So the program must have tried to access a character that doesn’t exist.

Because it seems to have done its work first, it may have tried to access a character that

is beyond the last character in the string. Recall that i starts at 0 and goes up to 85; the

final character in the string is number 85. But our program not only refers to wyatt[i],

it also refers to wyatt[i+1]. So at the very last step, it’s trying to access the character at

offset 85 and the character at offset 86 of the example. However, there is no character

86 steps away from the first one. Try it and see:

wyatt[86]↵

That’s what is causing the error.

There are a few ways to fix the problem with the final comparison. Essentially, the

program shouldn’t be attempting to make this comparison. It’s asking, “Is this string’s

final character the same as the character after it?” That question makes no sense. All

the other comparisons make sense, but not this last one. So, let’s just make one fewer

comparison. Instead of having len(wyatt) determine the limit of our iteration, we will

use len(wyatt)-1.

128	 Chapter 8

pairs = 0

for i in range(len(wyatt)-1):

 if wyatt[i] == wyatt[i+1]:

 pairs = pairs + 1↵

Now there’s no error produced, and the result that remains in pairs is correct, as it was

before.

[Exercise 8-1]  A Function to Count Double Letters

Bundle this code into a function, twin(), that returns the correct answer. It’s best to

type everything again, line by line, ensuring that you define a particular argument (the

string to be checked) and use that in the body of the function. After writing this code,

test your function. Test it on 'Oolong', for instance, to see if you are correctly consid-

ering the lowercase version of the string. The four lines of code given previously are

not sufficient to deal with that string properly. You will need to recall, or review, how

the string being checked was converted to lowercase. Then, you should include this

conversion in your function.

[8.5]  Strings and Their Length

Strings are very useful for representing textual data or generating new data, and index-

ing into them and slicing them is only the beginning. We’ll start this section with a

short prose paragraph, Article 1 of the Universal Declaration of Human Rights, the

English text. The text of this document can be found online at:

un.org/en/universal-declaration-human-rights/

You can find Article 1 just after the Preamble, or you can type in the two sentences

yourself. Here’s what to enter, all on a single line:

text = 'All human beings are born free and equal in dignity and rights. They are
endowed with reason and conscience and should act towards one another in a spirit
of brotherhood.'↵

After you’ve done that, enter just the variable name text in the interpreter. You should

get all of this text back, quoted, because this string currently has the value of the vari-

able text.

A simple question to ask is how long this string is—how many characters are in it.

We can figure this out by simply checking the length of the string, using the len()

function. Take a guess and then try:

http://un.org/en/universal-declaration-human-rights/

Text I	 129

len(text)↵

The result should be 170, assuming you didn’t add spaces anywhere or mistype or

mispaste the text. Some people are concerned with character counts; it’s not a bad

measure of how much text is there. (I have occasionally written book reviews that are

exactly 1,024 characters long, and some conferences ask for abstracts and biographies

of no more than a certain number of characters.) But we could certainly enrich our

understanding of a text if we were able to consider the word level as well. So, let’s see

how we can compute in a per-word manner.

[8.6]  Splitting a Text into Words: First Attempt

Strings provide a very useful method for this particular case, looking at text word by

word. This method, split(), divides a string into a list of strings, breaking it apart

whenever the specified string (the one given as an argument) is found. Try this and see:

text.split(' ')↵

The result is our string, but split into a list of words. The punctuation that is next to

a word stays with it. Type text again to see that this method returns a list with the

split-up string as elements but does not change the value of text itself or the value of

whatever string it is invoked on. Check this yourself by looking at the current value

of text:

text↵

Providing a new result while keeping the original value intact can be very useful.

There are plenty of cases in which we would want to count the words in a string with-

out destroying, or overwriting, the original string. On the other hand, methods that

do modify their objects, when the programmer would prefer that they do not, are not

deeply problematic, as long as the programmer remembers (or figures out) in which

cases a change is being made.

We can check the length of the split-up string, text.split(' '), as a way of deter-

mining how many words are in the text:

len(text.split(' '))↵

To see that you can split a string using any string as the point of division, try using the

word 'and' as the argument—after guessing what will happen:

text.split('and')↵

130	 Chapter 8

Using split(' ') is a first approximation to counting words; it works fine on certain

well-behaved and nicely typeset texts. What if we had a text that had more than one

space between some of the words? For instance, let’s put three spaces in the middle of

this string:

hi = 'hello world'

hi.split(' ')↵

The result makes a certain amount of sense, but it is a bit unusual—and it is probably

not what we want for word-counting purposes. The string is split into 'hello', the null

string, the null string again, and finally 'world'. The three spaces in the middle were

used to divide this string into four parts.

Note that this result is exactly the same as:

'hello world'.split(' ')↵

Yes, this line produces exactly the same result as when the two previous lines are both

run; do try it out to be sure. The only difference is that in the previous two lines, the

string 'hello world' is given a label, or equivalent, assigned to a variable, hi. This

means that later on, it’s possible to refer to hi rather than writing out 'hello world'.

And if we transform what we have labeled hi in some way—assigning a new value to

that variable—that variable will refer to the transformation.

There’s still the problem of an improperly split text. The way to deal with this is to

use split() without giving it an argument at all. If no argument is provided—that is,

if nothing is in the parentheses—split() uses any sequence of whitespace that it finds

to divide the string: not only one or more spaces, but also any run of spaces, tabs, and

newlines. This means that when it encounters three spaces in a row, it considers that

whole sequence of spaces to be the divider. This gives us a more sensible means of

dividing a text into words. Try it and see:

hi.split()↵

Notice that this line is making use of the convenience that the variable hi provides

us. We don’t need to type (or copy and paste) 'hello world' again; we can simply

type these two characters. That’s of course not the only reason to use variables, but it

is one.

Because there are no runs of more than one whitespace character—no sequence of

two or more spaces, for instance—in our string from Article 1 of the Universal Declara-

tion of Human Rights, the result of text.split() is the same as the result of text.
split(' ').

Text I	 131

[8.7]  Working across Strings: Joining, Sorting

Let’s start this section by assigning a short list of people’s names to a variable called

names:

names = ['Bob', 'Carol', 'Ted', 'Alice']↵

Because we can split a string apart into a list of strings, it should not be too surprising

that we can join a list of strings together into a single string. We simply use the join()

method, like so:

' & '.join(names)↵

Note the spaces around the &. The only odd thing about this is that join() is not a

method of the list. It’s a method of the string that is used to do the joining—the con-

junction, if you will. The argument to join, included in the parentheses, is the list whose

elements (all of them strings) are to be joined together. Try it the other way around to

see that it won’t work:

names.join(' & ')↵

The error message (AttributeError: 'list' object has no attribute 'join') may

not be crystal clear, but you should be able to see that it’s at least consistent with the

discussion so far. A list doesn’t have a join() attribute (specifically, a method). Strings

do have this method, and so we need to invoke join() on a string.

Check to see that just as split() leaves the string it is invoked on intact, join() also

leaves its list argument intact:

names↵

Now try this again:

' & '.join(names)↵

Invoking ' & '.join(names) results in the title of Paul Mazursky’s 1969 film. But we

could use a different conjunction, too. Try:

' and/or '.join(names)↵

There are many ways to format output to make it more legible. At this point, I’ll note

that join() can be used for that purpose. In Python, a newline character is represented

within a string as \n. If this newline is used as the conjunction, the list is effectively

typeset with one item per line:

'\n'.join(names)↵

132	 Chapter 8

The result here might be even less exciting than you expected. The Python interpreter

shows you \n rather than actually producing a newline. But try printing this to see

what the result will look like:

print('\n'.join(names))↵

As you probably expect, you can include other text in addition to a newline. Type this

in, think about what it will do, make a guess about the output you expect, and press

Shift-Enter:

print(' exists.\n'.join(names))↵

Did you expect the result to claim that Bob, Carol, and Ted exist? But not that Alice

does? Remember, join() is placing a sort of conjunction between strings in a list. It

isn’t adding anything to the end (or beginning) of the list. Nor is it doing something

before or after every element. But if you want to add something to the end of any

string, you can do it with string addition, using +. The entire expression ' exists.\n'.
join(names) returns a string, so simply put a + after it and then conclude with the

string necessary to assert everyone’s existence. Figure out what this concretely means

in Python and give it a try.

If you followed the suggestion, you will have found one of several ways to go

through a list of strings and print each string with ' exists.' appended to the end

of each one. We also added a newline to the end of every string except the last one. I

consider that it’s not wrong (it does actually work), but this code is also not optimal.

The purpose of join() is to add the same conjunction between each string in a list.

In this last example, we really didn’t want to do that; we wanted to add something to

end of each string. But we got to that point in a quasi-exploratory way, first using the

newline as a conjunction and then seeing that we could make each name the begin-

ning of a short sentence.

Programming is full of different ways to do the same task, regardless of program-

ming language. In exploratory programming, I find it best to first get a program work-

ing, functioning in the intended way, and then (in at least some cases) worry about

using the best method, or at least a better and reasonably good method, by changing

the code in a process of refactoring.

The current method, even though it can be accomplished in a single line of code,

isn’t actually the best one. For one thing, the string ' exists.' is repeated in two

places, as the conjunction and as the string added at the end. If this were part of a lon-

ger program, I might decide at some point that instead of using ' exists.', I would

like to say, ' just simply is!'. But I’m inviting a mistake, because in the current code

Text I	 133

I am able to change ' exists.' in one place and accidentally leave the original text

unrevised in another place. To repeat myself again: don’t repeat yourself.

Does it not seem very likely that a careful artist or humanist would make this sort

of mistake? Maybe not. But consider that if one line of code has the possibility for

a mistake of this sort—an unnecessary possibility—then one hundred lines of code,

which is really a rather short program when one is considering a reasonable research or

art project, could introduce the possibility of one hundred different types of mistakes.

In a quick sketch, it may not be worth it to refactor and produce new code that does

the same thing in a better way. But when more than a few lines are being written, and

there’s a chance to improve and foreclose the possibility for future mistakes, I recom-

mend it.

[8.8]  Each Word without Joining

As a first example of refactoring, here is a better way to produce the same text:

for person in names:

 print(person + ' exists.')↵

This is two lines long, and thus less concise, but it certainly is very straightforward.

Instead of using the newfangled join(), this code simply iterates through the list, and

for each string in it (each person) it prints that string with ' exists.' added to it.

There is no need for explicit newlines (each represented as \n) because print produces

a newline each time after it is done outputting each string.

Now, join() is not entirely useless simply because we eliminated it in this particular

case. There are just different situations in which it is best to use it.

While we have names handy, let’s see how we can sort lists. To start with, let’s use a

way of sorting this list that is similar to split() and join() in that it returns the value

we’re interested in—the sorted list—and does not change the value of the variable

that we start with. In other words, we want to get a new sorted list without modifying

names. Here’s how to do it, using the sorted() function:

sorted(names)↵

Check to see that after this function has done its work, names is unchanged:

names↵

Very nice. There is also another way to sort sequences, and this way sorts them in

place. In other words, the original list itself is sorted, and no new list is produced. This

134	 Chapter 8

can be efficient for very long lists. In extreme cases, when the list occupies more than

half of the computer’s memory, it may be possible to sort the list in place and impos-

sible to return a sorted copy of it because there is no room in memory for the copy.

When there is truly no need to retain the original, unsorted list, sorting in place is a

good idea. It can be done in this case with names.sort(). Don’t take my word for it.

Try it out!

By now we have covered both the essential, general programming fundamentals

and some of the ways that we can work with a specific medium, text, using strings,

character indexes, slices, splitting, joining, and sorting. Not only has iteration been

explained, with different examples of going through lists and performing calcula-

tions—but we have also seen how to iterate through a string and examine slices of it

to determine double letters. This is a critical point in the book where you should be

able to put together the fundamentals of programming and the basic ways that Python

allows you to work on strings to accomplish simple text analysis, manipulation, and

generation. Once you do so, you will be ready to move to more complex work with

text, to work with images, and to the other topics of the book. To ensure that you

understand the essentials so far and can proceed, at this point I present not a free

project but several exercises.

[Exercise 8-2]  Same Last Character

Write same_last(), a function that accepts two strings as arguments and returns True

if they have the same last letter, False otherwise. For this exercise, you can assume that

both of the strings are at least one letter long; it does not matter what happens (the

program could crash, etc.) if one or both of the strings is the null string.

After you write a function that works, take a look at the body of the function you

wrote—the part after the def line with the colon at the end of it. How long is that code

block? If you have more than a single line of code there, you should refactor. You can

solve this problem with a function body that consists of only one line.

[Exercise 8-3]  Counting Spaces

Write count_spaces(), a function that accepts a string as an argument and returns the

number of spaces in the string. Use iteration to determine this.

If you can think of more than one way to accomplish this, write count_spaces_2()

and go on to write count_spaces_3() and beyond if you like, showing the alterna-

tives. To accomplish the basic, initial count_spaces() function, no special knowledge

of Python is needed beyond what has already been covered in this book. If you can’t

determine how to solve the problem with the techniques explained, you need to review

Text I	 135

the book and learn the fundamentals, determining how iteration can work in this case.

Then, if you like, you can seek alternative ways.

[Exercise 8-4]  Counting Nonspaces

Write count_nonspaces(), a function that returns the number of characters in a string

that are not spaces. Try figuring this out using iteration, with reference to the problem

just solved. Once you have solved the problem this way, see if you can determine how

to do this in a single line (not counting the line beginning with def) by having count_
nonspaces() call your count_spaces() function.

[Exercise 8-5]  Determining Initials

Write initials(), a function that takes a string containing any name (e.g., a personal

or business name) and returns the initials. For instance, the values returned by the fol-

lowing function calls will be:

initials('International Business Machines')

'IBM'

initials('Georges Perec')

'GP'

You should be able to tell what type the return value (i.e., your result: the initials)

should be. The function should work properly on names with any number of words,

whatever the length of the words. You do not have to worry about special handling

for cases where punctuation makes up its own “word” or where a word begins with a

punctuation mark or where you know that a compound word should really provide

two initials instead of one. Just include the first character of each part of the string

separated by whitespace. For instance, as we have defined the function here, the fol-

lowing return values are actually correct:

initials('Country, Bluegrass, & Blues')

'CB&B'

initials('Vladimir "Pootie-Poot" Putin')

'V"P'

[Exercise 8-6]  Removing Vowels

Write devowel(), a function that accepts a string as an argument and returns the string

without the vowels. For instance, given 'hello world', it will return 'hll wrld'. Just

136	 Chapter 8

consider the five standard, full vowels for this exercise, neglecting poor y and w. We

haven’t discussed how to remove characters from a string, but you can still solve this

problem. Develop a solution that involves building up a new string, leaving the vowels

out as you do so.

[Exercise 8-7]  Reduplications

Write reduplication(), a function that accepts a string and returns True if the string

consists of some sequence of characters (call it A) followed by the same sequence of

characters, A. The function needs to return False otherwise. For instance, given 'hello
world' it will return False but given 'worldworld' or 'aa' it will return True. Of

course, for 'worldworldmoon' or any other reduplication with something stuck on the

end of it, the answer is False. We will concern ourselves only with strict lexical redu-

plications for this exercise.

To figure this one out, you probably want to find the midpoint of a string, the place

halfway along its length. But if you do this with standard division, using /, you’ll get

a number with a decimal point, which can’t be used to refer to a point in a string. You

either can use integer division, which is done with the operator //, or you can convert

your answer to an integer with int().

[8.9]  Verifying Palindromes by Reversing

A palindrome is a text that reads the same forward and backward. Actually, any sequence

of discrete tokens or objects—a genetic sequence, the digits of a number, a row of soft

drinks arranged in a refrigerator rack—can be palindromic or not. To begin, though,

consider words represented as strings.

We will focus on single words in which the unit of reversibility is the letter. Palin-

dromes in this sense are civic, racecar, and kayak, for instance. There are other words

that come close (in some sense) to being palindromes but aren’t. The word revere,

for instance, would be palindromic except for that e on the end. It isn’t difficult for

people to distinguish palindromic and nonpalindromic words, but we might want to

do this for every word in a very large document or even a corpus of documents. We

might be interested to know if authors such as Nabokov and Poe, who had a signifi-

cant interest in palindromes, used more palindromic words than other authors. Or

we might want to know if a particular language, as represented by a particular cor-

pus, typically has a higher percentage of palindromic words than another, similarly

represented.

Text I	 137

Let’s write a very simple function to return True if we have a one-word palindrome

and False otherwise. Initially, we won’t care what this function does if we give it some-

thing other than a single word. We also only expect it to work if the case of the letters

is the same: civic is a palindrome, but Civic is not (sorry, Honda).

Now that you have learned the fundamentals of programming, you should be ready

to try a task like palindrome validation on your own. Can you fill out the following

partly completed template so that it gives the right answers?

def palindromic(text):↵

Take a few minutes, at least, to try to come up with an answer, based on what I’ve

mentioned about palindromes and what you know about programming. If it becomes

too frustrating, you can just read on, but give yourself a chance to develop a function

and see how you approach the problem.

There are several ways to go about writing such a function, and we’ll go through sev-

eral of them. To begin, we’ll develop a function that accepts a string, that has a string

argument, but internally tests whether or not lists are palindromic. Lists and strings are

both sequences, but instead of testing the string 'civic' we’ll test that sequence of

characters stored in a different way, as a list: ['c', 'i', 'v', 'i', 'c'].

We can build lists of characters from strings easily, using casting:

list('rotor')↵

And of course, these lists can be labeled (assigned to variables):

to_test = list('rotor')↵

There are a few good ways to test for palindromicity. When we’re testing lists, it’s very

useful to know that there is a built-in way to reverse them:

test = ['a', 'b', 'c']

test.reverse()

test↵

In the second line, the list labeled test is reversed in place. Just as the sort() method

sorts a list in place, this reverse() method reverses it in place, so that the original,

unreversed list does not remain in memory; only the new result is there. How did you

know that reverse() was available as a method of lists? In this case, you learned it by

reading a book that introduces programming—this book. You could have also learned

about this by consulting documentation or tutorials online, by asking someone else

138	 Chapter 8

(in person or online, in a forum), or by using Jupyter Notebook to inquire about what

methods are provided by lists, as explained in 10.3, Generating Very Simple Images.

Now, why did we bother using the list representation, when strings are much

more obvious ways of representing text? Lists are being used here because they have a

reverse() method and we want to reverse the data we have. Strings don’t have such

a method. The designers of Python must have figured that if people were trying to

have their program reverse a string, they were probably making a mistake rather than

undertaking some serious activity such as palindrome checking. Check for yourself to

see that the reverse() method isn’t available for strings:

text = 'abc'

text.reverse()↵

Let’s try manipulating a word to see if it’s the same forward and backward:

word = 'hierarchy'

backlist = list(word)↵

What do you expect to be stored in the variable backlist? What will the type of data

be, and what specific data will be stored there? Formulate an answer and check it:

backlist↵

Now—because backlist is the right type of object—let’s reverse it:

backlist.reverse()

backlist↵

The original, unreversed list is gone, replaced by the reversed list. But remember that

the variable word still has the original string, and that string can once again be made

into a list:

word

list(word)↵

You should be able to see that there’s an expression that yields the word as a list,

a character at a time, from beginning to end. And there’s another list in memory,

labeled by a variable, that represents the word as a list, a character at a time, from end

to beginning. The question of whether the word is a palindrome is simply the question

of whether these two lists are equal, which can be tested with ==. Type in the expres-

sion, which will be True for a palindromic word and otherwise (as in the current case)

will be False.

Text I	 139

You have just done all the work that a function needs to do to determine whether a

word is palindromic or not. You haven’t written the function yet (I presume), but you

have tried out all the code it will use in the interpreter. Now, put it together as follows,

with this as the first line:

def pal(word):

This line indicates that you are defining the function pal(), which accepts one argu-

ment, word. You should use three additional lines to implement the function that I

have tried to lead you to discover in the previous text. The three lines should do the

following:

1.	 Define backlist as the list containing the characters in word.

2.	 Reverse backlist.

3.	 Check to see whether the list of characters in word is the same as backlist; return

the result.

Only four lines (including the standard first line of a function definition) are needed.

There is no need to use the keyword if statement—that is, to use the conditional

statement—to return True in one case and False in other. Your expression to check for

equality already produces True or False as is appropriate. Just return that value directly.

If you’re totally puzzled about how to do this, it’s okay to first develop the function

pal() using a conditional statement and then refactor to remove it.

After developing this, enhance it so that it works regardless of typographical case—

so that 'Civic' returns True, for instance. To accomplish this, just use the lower()

method that was introduced in 8.4, Counting Double Letters. Modify pal() so that

it compares the characters in the lowercased word with the reversed characters in the

lowercased word.

The method developed so far has some nice qualities, but there’s also something irk-

some about it. The use of lower() to lowercase the string doesn’t seem to be a bad idea,

if we want to ignore case. But we then convert our string to a list, reverse the list, and

convert the string again so we can compare the two lists. On the one hand, this repre-

sents something fundamental about programming languages: they almost always have

different types of data (strings, lists), one can convert among these types, and certain

things can be done using some types that cannot be done with others. On the other

hand, needing to convert back and forth in this way can be rather annoying.

Even though there is no reverse() method for strings, there is a way to easily (and

very quickly) reverse them. Here’s how to start with a string containing the alphabet

and get a reversed string:

140	 Chapter 8

'abcdefghijklmnopqrstuvwxyz'[::-1]↵

Alternately:

alpha = 'abcdefghijklmnopqrstuvwxyz'

alphaback = alpha[::-1]

alpha↵

alphaback↵

From typing this in, you can see that this method doesn’t change the original string;

it produces a new string. But what exactly is happening here? As discussed in 8.2, Strings,

Indexing, Slicing, this operation is a way of slicing the string. Specifically, it starts at the

beginning (there is no first number), goes to the end (there is no second number), and

proceeds using a step of -1—yes, negative one—which corresponds to moving one char-

acter back each step. The slice is therefore done one character at a time, but backward.

Is this an obvious way to reverse a string? If you have a python wrapped around your

brain stem, perhaps it is. It seems most obvious to many newcomers, and to several

programmers who are familiar with the English language, to try to use the reverse()

method instead. But this slicing technique works, is a very fast operation, and can be

expressed compactly in code. Refactor your pal() function using this method of pro-

ducing a slice with step -1. You should be able to write a function that consists of the

function definition (beginning with def) and only one additional line.

[8.10]  Verifying Palindromes with Iteration and Recursion

Having figured out how to solve this problem, we’ll abandon the extremely efficient

and concise method of comparing a string to its reverse. We don’t desperately need

to ship a palindrome verifier by some deadline so that Apple’s App Store can choose

whether or not to approve it. We’re doing these exercises to learn about programming

and how to solve problems. We could try to solve three different problems using three

different approaches, but instead we will hold the problem constant and see how dif-

ferent methods can be used to solve it. Being able to approach a program in different

ways is one foundation for exploratory programming.

Next, we will use palindrome checking as a problem that can be solved through

iteration. And after we’re done with that, we can use this same problem to understand

how the same task can be accomplished with recursion. These two approaches were

introduced in 7.6, The Factorial. There you found that either one could be used to com-

pute the same result. In this return to iteration and recursion, we’ll see that sometimes

Text I	 141

one or the other method is actually more advantageous. This is why it often helps to be

able to think about computing in more than one way.

The iterative version of palindrome-checking, as described here, involves going

character by character through the string, forward, and at the same time going char-

acter by character through the string, backward, comparing each character. The first

comparison we want to make is between the first character and the last character. The

index (or offset) of the first character is 0, while we can use index (or offset) −1 to access

the last character:

original = 'Civic'

string = original.lower()

string[0]↵

string[-1]↵

string[0] == string[-1]↵

Then, the second comparison we want to make is between 1 and −2. The third is

between 2 and −3, and so on. If we like, we can make as many comparisons as there

are characters in the string. Let’s use the variable right to hold the right-side index that

starts with −1 and decreases:

right = -1

reverses = True

for letter in string:

 reverses = (reverses and (letter == string[right]))

 right = right - 1↵

Initially, the program assigns the variable right to have the value −1; that’s the

special index, indicating last character, that we start with as the program goes back-

ward through the string. Also, reverses is set to True. We assume the string is pal-

indromic until we find out otherwise. As the program iterates through string, it

compares the current character (from our forward iteration) with string[right] (from

the other side of the string). The expression reverses = (reverses and (letter ==
string[right])) updates reverses to remain True (if the characters are equal) or to

become False (otherwise). This essentially creates a long logical conjunction: “(the

first and last characters are the same) and (the second and second-to-last characters are

the same) and . . .”. If even one of these is False, the whole expression is False. If all

are True, we have a palindrome.

142	 Chapter 8

This is a little hard to understand, but it could have been worse. If I had written:

 reverses = reverses and letter == string[right]

Instead of:

 reverses = (reverses and (letter == string[right]))

The code would still have run properly, but it would have been harder (particularly for

a new programmer) to see what was going on. The way I’ve written it, it’s clearer that

all of that stuff on the right is being assigned to reverses. Specifically, we’re assigning

it the value of the conjunction of reverses itself (so that if it becomes false, it says

false) and this other equation, which will be true as long as those opposite characters

are true. We’re not checking to see if reverses and letter is equal to string[right].

The parentheses make that clear. While they aren’t needed for the program to run and

work correctly, parenthesizing can still be a help to those seeking to understand the

program or to develop the program in the first place.

The only other part of the code, the final line, decrements right (i.e., subtracts one

from this variable) so that it remains the backward index or starting-from-the-right index

throughout the process. Try this code out to see that it works. To check out what is

being compared at each step, modify it to add a print statement:

right = -1

reverses = True

for letter in string:

 reverses = (reverses and (letter == string[right]))

 print(letter + string[right] + ': ' + str(letter == string[right]))

 right = right - 1↵

As soon as you have this working, bundle this up into a function, pali(), which

accepts a string as an argument and returns whether or not it is a palindrome. This will

encapsulate your code so that it can be easily reused. Apply your pali() function to

both palindromes and nonpalindromes. You should be able to trace through the pro-

cess and see how the iterative approach works. Of course, you also need to make sure

it’s returning the appropriate value for strings of different sorts.

If you contemplate this for a while, you should see that this code makes unnecessary

comparisons. This code compares the first half of the string to the second half of the

string. But then it continues to compare the second half of the string to the first half,

which is just repeating the work already done. You can, if you like, fix the program so it

goes only through half of the string. But you could also take a different approach—you

Text I	 143

could simply not care about the extra work the program is doing. Yes, it means that the

process will take twice as long, which could possibly be bothersome in some circum-

stances. But this is a sound method of checking palindromicity, and in attempting to

fix it, you might introduce a bug. As with any time you have a choice to refactor, you

should realize that it is a choice, not a requirement.

Why would we want the (relative) mess of code above, packaged into a function,

instead of something very simple and elegant? For instance:

def pal(text):

 return text == text[::-1]↵

Or, if you like, a similar function with the method lower() applied on both sides of

the test for equality? Well, one situation in which we might want the longer function

is when we are learning to program and trying to understand different ways of tackling

problems. But there is also a practical advantage to the iterative code, one related to the

idea of sorting in place. Consider a truly enormous string that is being tested for palindr-

omicity. Let’s have this imaginary string be so large that it takes up three-quarters of the

memory in our computer. If we use the code that makes a reversed copy of the string, that

reversed copy won’t fit in memory because the string and its reverse need 150 percent of

the available memory. (True, we might use our hard disk to provide virtual memory, but

whatever memory we have is ultimately limited in some way, and we can exhaust it.) The

code to compare a string to its reverse won’t work in this situation. But the iterative code

will work in this case. It’s a small program (a program which itself doesn’t take up much

memory) and simply compares the string two characters at a time without needing to

make a copy. So there is this concrete reason to learn about both approaches.

There’s also a more directly practical reason, which matters even for small strings.

We might want to not only detect whether a string is a palindrome or not, but also to

find out, if it isn’t, where the first (or outermost) mismatch is. The method we used

previously isn’t going to easily allow that, but a different method will.

Instead of just slightly refactoring the iterative palindrome checker, let’s write it

entirely over again. Our first checker, pal(), implements this sort of idea: “A palin-

drome is a string that is the same as its reverse.” The second checker, pali(), imple-

ments a different concept: “A palindrome is a string whose first character is equal to

its last character, whose second character is equal to its second-to-last character, and so

on.” Now we’ll implement palr(), a recursive palindrome checker, whose idea is this:

“A palindrome is a string such that if you take off the first and last character, they are

the same, and what remains is a palindrome.” Recall that the first letter of our string

is string[0] and the last one is string[-1]. You can determine the slice we want to

take that has everything else (“what’s left”) in it, which is in between these two. Try

144	 Chapter 8

out some different slices in the Python interpreter to see what gives you all but the first

and last character. You can use a string that you type in directly, such as 'hello', to

do this if you like.

This recursive idea isn’t yet precise. As we just described it, it will never “bottom

out” by reaching a case that we know is palindromic (or not). We also need to add

something else: “Any string of one character or zero characters is a palindrome.” Here

is the full implementation of this recursive idea, which includes checking a version of

the string that has been converted to all lowercase:

def palr(text):

 lowercase = text.lower()

 if len(lowercase) <= 1:

 return True

[Figure 8-2]
There are iterative and recursive ways to see if a string is a palindrome. “KAYAK” is being checked

iteratively. First, is the first character (index 0) is the same as the last (index -1)? Yes, so is the sec-

ond character (index 1) the same as the second-to-last (index -2)? And so on. “ROPER” shows the

recursive way. Are the first and last letters the same? Yes, both are ‘R.’ Next, if anything more than a

single character is left, use the recursive checker again on it, beginning stage 2. In this case, “OPE”

is tested at the beginning of the second test, and ‘O’ is not the same as ‘E,’ so, no palindrome.

Text I	 145

 else:

 if lowercase[0] == lowercase[-1]:

 return palr(lowercase[1:-1])

 else:

 return False↵

Remember that we conceptually defined a palindrome in terms of the concept of a

palindrome. So it shouldn’t be too big of a surprise that our function palr() calls itself.

Here’s a question, similar to one that was posed before: Could palr() call pal() or

pali() instead? Why or why not? Modify palr() so that it calls first pal() and then

pali() to see if you are right. Is palr() calling pal() an example of recursion? If you

aren’t sure, read the discussion of recursion again and check the definition of it in the

glossary. This type of mash-up isn’t an example of recursion, nor would it be sensible pro-

gramming practice, but if you are able to think through this, you’ll understand a differ-

ent important concept: how the interface to a function provides one sort of abstraction.

This is a great point at which to review the recursive function introduced in 7.7,

“Double, Double” Again. It should now be easier to see how doubler() operates with

reference to palr(). Trying these programs out should help you see that even if the

idea seems somewhat odd at first, there is nothing mystical or metafictional about

a function that calls itself. Recursion is just another approach to doing work with

computation.

The palindrome checkers developed by this point will work for single words of most

sorts. There are, however, more complexities to determining whether a given string is

a palindrome. It’s not a major concern in English, but in general, diacritical marks are

usually ignored when determining whether a string reads the same forward and back-

ward, so that e and é and è are all considered the same letter. (Of course, this does come

up in English, as when you are working on your résumé in a café, perhaps in a naïve

manner.) Also, in general, it’s not just individual words, but also longer strings, that

can be palindromes or not. For palindromic purposes, punctuation marks and spaces

are generally ignored; numerals usually are not. So a more refined definition of the pal-

indrome is that it is a sequence of characters such that the letters and numerals in it are the

same forward and backward. And finally, the discussion so far has been about letter-unit

palindromes, but even sticking to the topic of language, there are texts and utterances

that are palindromic by syllable, by word, by line, by sentence, and so on.

If you decide that certain characters, such as punctuation, whitespace, and so on,

just don’t count when it comes to determining the palindromicity of a string, you may

146	 Chapter 8

find that modifying the code to account for this is easier with some programs and

harder with others. In this particular case, I find that the iterative checker is a pain to

extend in this way, whereas the recursive checker is easier to work with. What seems

to be the simplest way to do it, though, is to clean up the original string so that only

characters and numerals remain, then check the cleaned-up string. And that is one of

many tasks that is most easily accomplished with regular expressions, which are covered

in the next chapter.

[8.11]  Essential Concepts

[Concept 8-1]  Strings Can Be Examined and Manipulated

You should be able to access one character of a string using the index and be able to

access any section of a string with a slice. Splitting a string and joining a list of strings

should also be easy for you. Work at string manipulation further in Jupyter Notebook

if anything is unclear.

[Concept 8-2]  Iterating over Strings, Accepting Strings, and Returning Strings Is

Possible

It’s also important to be able to integrate the ways you are accessing and dealing with

strings with the fundamentals covered earlier. Strings are sequences; understand how

to iterate through them. It should be obvious at this point how a function can accept a

string (or two strings, for that matter) and how it can return a string if necessary. If the

task is something such as counting spaces, however, the return value will need to be a

different type. Which one?

[Concept 8-3]  Reversing, Iterating, and Recursing Are All Effective

The point of the palindrome-checking example was to show three different ways of

approaching the same problem. Not only do these three methods each work, but they

each have advantages. Reversing the text is simplest in terms of code length and pro-

gram development; the iterative procedure uses the least memory; and finally, the

recursive method is a clean decomposition of the problem into a single test and a

smaller version of the problem. It’s important to understand how these three solutions

work because as your explorations grow more complex, it can be useful or even neces-

sary to frame one particular task in different ways.

[9]  Text II: Regular Expressions

[9.1]

Now that we have manipulated texts (by indexing individual characters, taking slices,

splitting strings, and joining lists of strings), it’s possible to consider the powerful, gen-

eral approach of using regular expressions. Regular expressions are a formal language

themselves, used in Python and also in many other contexts. While they do not do

everything that a general-purpose programming language does, they are extremely use-

ful for text processing.

[9.2]  Introducing Regular Expressions

We very often want to transform texts or search for a particular sort of string within a

text. There is a somewhat cryptic-looking but extremely useful, and really quite wide-

spread, formalism for doing so: regular expressions.

Standard text editors—all but the most simplified ones—allow you to search and

replace text using regular expressions. You can even search in a word processor using

regular expressions. You can, additionally, search large files of yours (such as email

records you keep locally) using regular expressions, either from the command line

or using a text editor. This means that even if you never program after reading this

book—an outcome I dread—you can still get a great deal of practical use out of regular

expressions, improving the way you work with computers.

A regular expression, sometimes called a regex, can get extremely elaborate, but, as

with most things related to programming, you can learn just a little about this area and

get a lot of use out of that knowledge. The system of regular expressions allows you to

define patterns, so instead of just searching for a particular string, you can easily search

for whole categories of strings.

148	 Chapter 9

To begin, have a text editor ready, such as Atom or Geany (on GNU/Linux or any

other platform), Brackets (Mac), or Notepad++ (Windows). Then, grab a large file

online; this time, grab the Project Gutenberg plain text UTF-8 edition of Pride and

Prejudice, which happens to be Project Gutenberg’s most-downloaded book:

gutenberg.org/files/1342/1342-0.txt

Save the file to your desktop and open it in your text editor. Using the Find option,

you can search this text using regular expressions. You may have to check a box that

says something like Use Regular Expressions. There also may be an option that sets

your search to be case-sensitive or case-insensitive; that is, your search treats capital

and lowercase letters differently or treats them the same. So that our regular expres-

sions work the same way as they will in Python, change your settings (if necessary) so

that your searches will be case-sensitive.

A very simple task one can do with the Find dialog is to see how many times a par-

ticular string occurs. Use the Find dialog to see how many times the particular sequence

of characters dance occurs in the text. Your answer should be sixty-four. Of course, you

can search for an even shorter string if you like. Say, for instance, that you’re curious

about how often the lowercase letter a occurs in Pride and Prejudice. Well, just put that

letter in the search box and click the button. Did you get 42,224? If you didn’t, you

may have downloaded a different Pride and Prejudice text file. It’s also possible that you

are doing a case-insensitive search. That is, you are searching for both a and A when

you only want to find the lowercase letter. Use some sensitivity, and change your text

editor settings so that your search is case-sensitive.

Using regular expressions, and in particular patterns that we define using the lan-

guage of regular expressions, we can do many other sorts of searches. We found how

many times the lowercase a occurs. Now, we might be interested in matching a small

number of characters, but still more than just a single character. For instance, what if

we would like to count the number of (canonical, full) vowels in a text? We could of

course manually search for a, search for e, search for i, search for o, and search for u,

and then add up the results with a pencil in our lab notebook. But then we would have

to not only do the same sort of thing five times, but also do some arithmetic. It seems

not only error-prone but also silly for us to do that when we’re sitting right in front of

a computer that can do such things for us.

Regular expressions allow us to define a character class of the five vowels. To define

any character class, that part of our expression needs to start with [and end with]. In

the current case, we can simply write: [aeiou]. Let’s go ahead and have this character

class explicitly include both capital and lowercase vowels: [aeiouAEIOU]. That wasn’t

very difficult, was it?

http://gutenberg.org/files/1342/1342-0.txt

Text II	 149

Be aware that your text editor may not use regular expressions by default. In Atom,

the editor I use, there’s a button that has “.*”, and that can be clicked on or off. I need

to click it on to search using regular expressions, just as I need to click on the “Aa” but-

ton to make my searches case-sensitive.

Try using this list expression, this last pattern, to determine the number of vowels in

Pride and Prejudice (209,876 by my text editor’s count). You may notice that there’s a bit

of computation going on as your text editor searches the text for all occurrences of the

five vowels in both upper- and lowercase. It may take a moment to get a result. Con-

sider, too, how much longer it would take for you to go through the text and determine

this without a computer. If you have a corpus of literature, you can quickly determine

which of the texts is most vocalic and which is least vocalic. Of course you’d want to

divide by the number of letters overall—the expression that matches “any letter” is

[a-z], or [a-zA-Z] should you want to include all uppercase and lowercase letters—

and you would probably automate the process rather than running this search by hand

on each file. For now, determine how many letters (overall) are in Pride and Prejudice

and then what percentage of them are vowels.

At this point we don’t have anything to compare against this result. Would a book of

poetry from a similar time period have a larger or smaller percentage of vowels? Would

another Jane Austen novel? Have literary works somehow become more or less vocalic

over time? Indeed, is the question of which texts are more vocalic and which are less

vocalic at all interesting?

To be clear, I’m not asserting that this question is a deep and compelling one. In

order to address questions such as these, we would need to generalize what we’ve done

in our text editor to a larger number of documents, probably writing some exploratory

programs to help us. I want to leave these questions aside, actually. My point is not

to interest you specifically in vocalic studies of this particular sort. Rather, my point is

that if you want to poke around and find out something about questions such as these,

you don’t have to prepare a grant proposal or a thesis proposal or otherwise come up

with an elaborate justification for taking a quick look. You also don’t have to hire a

programmer! With a small amount of programming knowledge, you can try out an

experiment along these lines and see if it seems interesting or if it leads to something

interesting.

[9.3]  Counting Quotations in a Long Document

Let’s now undertake an experiment which could be more interesting than vowel-

counting. We will begin by counting all the one-line quotations that occur in our text

150	 Chapter 9

of Pride and Prejudice. For our purposes, a one-line quotation is a string that begins with

a double quotation mark, ends with a double quotation mark, and has any number of

characters (even zero) in between. We really don’t want to restrict ourselves to one-line

quotations—it would be better to find quotations even if they run over several lines—

but let’s start with something simple and go from there.

When I developed the first edition of this book, the Pride and Prejudice text file that

Project Gutenberg offered was an old-style ASCII text file, and used inch marks—straight

double quotation marks, which are standard in ASCII but which no self-respecting

typographer would use in a book. Well, this has changed in file 1342-0.txt! We now

have proper double quotation marks and Unicode (UTF-8) text. Note, then, that in the

discussion that follows, a double quotation mark is not " but is either the opening dou-

ble quotation mark, “, or the closing double quotation mark, ”. Among other things,

this means that you’ll need to type these specific characters, or you’ll need to copy and

paste them from somewhere, such as the Wikipedia article “Quotation mark.” I use an

international keyboard layout and can quickly type ", “, or ”, but whether you want to

change your keyboard layout or not, you need to be ready to input the opening double

quotation mark and the closing double quotation mark.

To get back to how regular expressions work, let me next explain that there is a spe-

cial symbol used in regular expressions to mean, approximately, “any character.” This

is simply the period (or dot). To be precise, . is used to mean “any character except a

newline.” Because we are looking for one-line quotations, it’s fine with us have a sym-

bol such as . that will match everything except a newline.

Fortunately, in writing a regular expression, there is also an easy way to indicate

something like “any number of characters.” To say “any number of (whatever)” in a

regular expression, you use a quantifier. The first one I’ll introduce is *, indicating zero

or more occurrences. Bear with me for a moment; it probably seems a little bit strange

to match zero occurrences of something. But in combination with other parts of a pat-

tern, it can be very useful to do.

Because the way to indicate “any character except a newline” is with a period or dot,

and because the * means “zero or more of those,” .* means “any number of characters

except a newline.” Now to match our one-line quotations, the pattern, the regular

expression, that we can try is “.*” (a pattern four characters long that begins and ends

with our friends, the opening and closing double quotation marks).

Note that the opening and closing quotation marks in this situation are part of the

pattern. They aren’t there to surround a two-character string, for instance; they are

there because we’re trying to match a pattern that begins with a quote mark and ends

with a quote mark. Search for this pattern in the entire document and see how many

Text II	 151

times it occurs. If you have the same document that I do, the pattern will be found

729 times.

Now, it’s not very interesting to search a single file and find the result. What does

the result mean? If it were 22 or 8946 instead of 729—so what? But if we compare our

results with those from another file, we might be able to learn something about how

two texts relate.

So, go get this Project Gutenberg edition of Leaves of Grass:

gutenberg.org/files/1322/1322-0.txt

Again, it’s the plain text UTF-8 version. I selected this book because it’s also popular

and is almost the same length (in characters) as Pride and Prejudice. It’s not exactly the

same length, and when we wish to compare how many of something (quotations, pro-

nouns, etc.) are used in text A and text B, it really makes sense to normalize each value

by dividing by the length of the text. But for now, let’s just look at the overall number

of results for each document.

If you search the entire document for dance, without requiring that the case matches,

you’ll see that it occurs thirty-two times in Leaves of Grass. If you search for the pat-

tern “.*” (using the opening double-quotation mark and the closing double-quotation

mark), you’ll see only six matches.

This method doesn’t work quite as well as it could. Our idea of a “short quotation,”

one that occurs within a line, is a rather provisional one. It might make some sense

for lineated poetry, but less sense for a novel, because the way a particular compositor

has broken the lines will influence what a short quotation is in that case. Also, we’re

not even counting short quotations properly. Take a look at line 6,479 of your Leaves

of Grass file:

 Placard “Removed” and “To Let” on the rocks of your snowy Parnassus,

This is a good time to figure out how to go to a specific line using your text editor,

by the way. Being able to do this will come in handy when writing programs that are

longer than short snippets. It will also be useful to turn line numbering on so that you

can see which lines are displayed. In my editor, Atom, you can control whether line

numbers are displayed by going to Edit > Preferences, choosing the Editor tab on the

left, and checking or unchecking Show Line Numbers. You happen to be able to go to

a specific line number in Atom with Ctrl-G. In Geany, the option to go to a particular

line number is under the Search menu and is called Go to Line. It can also be activated

with Ctrl-L. Because you have dozens of text editors to choose from, take a look at your

menu or your text editor’s documentation and see if you can enable line numbering

and find a quick way of getting to a particular line. Search online to figure this out if

http://gutenberg.org/files/1322/1322-0.txt

152	 Chapter 9

you need to. Be sure to have line numbers turned on and to know how to move to a

specific line number before you continue.

Here’s what our current regular expression, “.*” (exactly those four characters) will

select in this line:

“Removed” and “To Let”

Show yourself that this entire sequence of characters is what is matched. Move your

cursor to the beginning of line 6,479 and use the Find option with this expression:

“.*”

You should see that entire phrase, with four words, selected.

That is, indeed, an opening double-quotation mark followed by a bunch of arbi-

trary characters followed by a closing double-quotation mark. We might prefer for our

expression to match “Removed” first and then to match “To Let”, but regular expres-

sions in general do not work this way. The matching that happens by default is greedy

so that strings that are as long as possible are matched.

We can fix our quotation-matching problem by writing a more precise expression.

Right now we’re asking for “ followed by any sequence of characters (except newlines) fol-

lowed by ”. But in fact, we should restrict what characters can occur inside our quota-

tion. Namely, we shouldn’t ever have “ (the closing double quotation mark) in there.

Fortunately, there’s a way with regular expressions to say every character except this one.

It’s done using the caret character ^ which means not. Therefore, ^” means not the clos-

ing double-quotation mark. Now that we’ve moved beyond the dot, we need to define

a character class as we did with the five vowels. So we’ll begin our expression with [

and end it with]. And we will allow any number of these characters, zero or more, by

putting the * at the end:

[^”]*

Just one more thing: right now, this matches any sequence of characters that doesn’t

have a double quote in it. For this to actually match quotations, we’ll want the expres-

sion to start with a double-quotation mark and end with a double-quotation mark:

“[^”]*”

Put your cursor at the beginning of line 6,479 once again and search using this pat-

tern. You should see that it matches only “Removed”, the first quoted text. Click Next

(or whatever option you have to find the next match) and you should see that the next

string that is matched is “To Let”. That is the sought-for result. Now, click Next again.

You should find that your expression matches:

Text II	 153

“Is it this pile of brick and

 mortar, these dead floors, windows, rails, you call the church?

 Why this is not the church at all--the church is living, ever living

 souls.”

This quotation begins at character 42 and runs over four lines. Remember that our

earlier pattern was searching only within individual lines. But by changing . to [^”],

we changed from any character except the newline to any character except the double-

quotation mark. That means our new expression will allow newlines to appear between

the double quotation marks, and what we find can run over several lines. So, in fixing

one problem, we’ve actually also achieved a goal that we had set aside.

There is one more wrinkle we need to consider. Some of the quotations in Pride and

Prejudice are more than one paragraph long, and start with one or more paragraphs,

each of which begin with a quotation mark but have no closing quotation mark; finally,

there’s a last paragraph to these quotations that has quotation marks at the beginning

and the end. (Two of the quotations in Leaves of Grass are like this, too, although there

the units are lines rather than paragraphs.) Conceptually, will our expression work to

find these multiparagraph quotations? Think about why it would or wouldn’t. Settle on

your theoretical answer to this question before you proceed so that you can test your

understanding of regular expressions so far. After you have come up with your answer,

try out the expression in both files and see if you are right: see if it does or does not

properly handle multiparagraph quotations of this sort.

You will need to see what happens in this case. Whatever the situation, our system

for identifying quotations is a pretty good start, and it didn’t even require writing a

computer program. The whole process simply resulted in a regular expression seven

characters long. If it seemed like it took a lot of effort, think about how much time and

effort it would take you to go through all of Pride and Prejudice and all of Leaves of Grass,

counting every quotation! And now you have developed a general method, one that

almost finds every sort of quotation and can be used on other books as well. And what

was difficult to do the first time will be much easier as you continue to work with texts,

regular expressions, and (soon) their use in computer programs.

As yet, we’ve only counted how many quotations there are in two texts. But because

we have developed an expression to match all the text that is in quotations, we can

do more. We can see how much of the text in Pride and Prejudice and how much of

the text in Leaves of Grass is quoted. Figuring out how much quoted text there is, or

what percentage of a text is quoted text, seems like it could be interesting, as it gives

154	 Chapter 9

us some insight into how much dialogue (in the form of direct discourse) there is. It

seems more meaningful than just looking at the number of quotations, too. Some tag

such as “he said” could occur at the end of a quotation or in the middle of it, between

phrases, and that would probably be a more subtle aspect of the text than how much

direct discourse was present.

To figure out the amount of quoted text, we’ll write a program and work in Python,

having learned a few things about regular expressions from our text editor’s Find dialog.

[9.4]  Finding the Percentage of Quoted Text

Now that we’re about to use Python to work with files, we need to figure out how to

write a program that reads in a file and can access the text in it. To see how this is done,

we’ll create a simple but relevant program to read in a file and print it out.

Let’s start with figuring out how to read and output the text in the file 1342-0.txt.

It’s not tough. We need to open the file using the open() function, read it using the

file’s read() method, close the file, and print the result. Closing the file frees up some

computer resources, but the main reason to close the file is that we’re done with it at

this point. If we were to try doing something with that file later, we’d be making a mis-

take and would like the system to produce a helpful error for us.

The following code will do this task, as long as you have your text file in the same

directory where you are running Jupyter Notebook:

source = open('1342-0.txt')

pride = source.read()

source.close()

print(pride[:1000])↵

Actually, the first line may not work. If it doesn’t, there are three obvious possibili-

ties. One is that you are running Windows and your system does not assume that text

files have a UTF-8 character encoding. You will see a “UnicodeDecodeError,” produced

in trying to execute the second line, if this is the case. If you encounter this, you can

fix the problem by explicitly indicating the encoding in the first line, changing it to

the following:

source = open('1342-0.txt', encoding='utf-8')

If this isn’t your problem, I can think of two more that may have cropped up. Maybe

Jupyter Notebook was not started in the right directory, or perhaps there’s a typo in

the filename. Make sure the filename you are using is the right one. Then, log out of

Text II	 155

your notebook and start it again, ensuring your new notebook is in the same directory

as the text file.

The result of these three lines should be a slice of the string with the first one thou-

sand characters of the file.

Python has a regular expression module; import it, now, to be able to use it:

import re↵

Using this module, we can find all occurrences of a pattern. To do this, we use the

findall() method of the re module and we provide two arguments: first, the pattern

we want to use, and then, the string we wish to search—representing an entire docu-

ment, in this case. To pack our pattern up for use in Python, we will prepare it as a

special kind of string, a raw string. I’ll explain why this is best to do later on; for now,

understand that this simply involves putting the letter r in front of an otherwise ordi-

nary string. So to find all the vowels in pride, we should use the pattern r'[aeiou]'

in the following way:

result = re.findall(r'[aeiou]', pride)↵

This finds every vowel and places each one, in the order found, in a list—a very long

list, in this case. Check the length of it:

len(result)↵

Were you startled to find that your Python program finds fewer vowels than your text

editor did? I was, initially. Then, I realized that this Python code is case-sensitive; it’s

only counting the lowercase vowels. There are a few ways to change this; one can, for

instance, set a flag to indicate whether the search is being done with or without regard

to case. But let’s do something quick and easy, as we did when we first searched for

uppercase and lowercase vowels in our text editor:

result = re.findall(r'[aeiouAEIOU]', pride)↵

This just “manually” adds the uppercase vowels as well. Check the length of result

again to see that you have the same number of vowels as counted previously.

Now, let’s take a look at what some of these vowels are. Type:

result↵

After a moment you should see a list displayed. You can scroll through it; it has all

the vowels found in it—more than two hundred thousand of them. This might be an

overabundance of vowels. Recall that using slices, we can see just a section of the list.

Let’s look at the first twenty:

156	 Chapter 9

result[:20]↵

That’s a little more tractable. If you look at the file itself, you’ll understand that these

aren’t the first twenty vowels from Pride and Prejudice; they’re the first twenty vowels

from the brief Project Gutenberg note at the beginning. To get only the novel, we would

need to either write code that ignores the additional front matter and end matter or

somehow clean the files. But you can see that with that step done, we could use regular

expressions to accomplish some analysis of the file.

Okay, now let’s use findall() to locate all the quotations. For our purposes right

now, we’ll include quotation marks themselves when we figure out how long all the

quotations are. If that doesn’t seem like the right way to do it, there are several ways to

take a different approach, but let’s keep things simple for now.

We just need to use the regular expression that we already have developed within

this Python method, findall(). We can take our expression, “[^”]*”, and enclose it

with the ' characters that we use to indicate strings in Python:

quotes = re.findall(r'“[^”]*”', pride)↵

Check on how many quotes there are and view the first ten:

len(quotes)↵

quotes[:10]↵

Assuming that all the quote marks are paired correctly, if we are interested in know-

ing the total amount of text that is quotation, we can simply figure out how long all

of the 1,751 quotations are when put together. (You did get 1,751 quotations, yes?)

We could iterate through the list and count the length of each, adding it to a running

total. Or we could just join everything into a single long string and take its length. Be

aware that '' here is the empty string, two single straight quotation marks one right

after the other:

len(''.join(quotes))↵

Not bad. What portion of text is that?

len(''.join(quotes)) / len(pride)↵

To get that as a percentage, just multiply everything by 100:

(len(''.join(quotes)) / len(pride)) * 100↵

We can stash this value in a variable:

pride_percent = (len(''.join(quotes)) / float(len(pride))) * 100↵

Text II	 157

Now, try the search on Leaves of Grass, adding the encoding parameter if necessary:

source = open('1322-0.txt')

leaves = source.read()

What else? Call source.close() because we’re done with the file. Then, let’s just dis-

play (or print) the first one thousand characters to confirm we loaded Leaves of Grass:

print(leaves[:1000])↵

Okay, now the same process for this text:

quotes = re.findall(r'“[^”]*”', leaves)

leaves_percent = (len(''.join(quotes)) / len(leaves)) * 100↵

You can see quite precisely what may have been obvious to you beforehand: that

the amount of Pride and Prejudice that is quotation is much more than is the amount of

quoted text in Leaves of Grass. This might lead someone to wonder if novels generally

use more quotations than poems. Maybe not: Poe’s “The Raven” is, using our method,

more than 37 percent quotation. That’s a lot of quotation for a poem that has only one

person and an imaginary bird in it. There are some poems with even more quotation,

along with some novels that completely lack quotations. But perhaps there is a trend.

Or maybe female authors use quotations in their writing more often than male authors.

Or maybe these things are true for certain historical periods and not others.

This example isn’t meant to lead to a dramatic conclusion, to a book full of revela-

tions, or to a digital humanities project. The point is that even simple regular expres-

sions (just a few characters in length) combined with a small amount of programming

ability can allow one to inquire in new ways, to think about texts in new ways.

And these sorts of techniques have implications for literary art as well. During the

first National Novel Generation Month (a computational spin-off from National Novel

Writing Month), Leonard Richardson generated an extraordinary text called Alice’s

Adventures in the Whale, which contains passages such as this:

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing

to do: once or twice she had peeped into the book her sister was reading, but it had no pictures

or conversations in it, “Can’t sell his head?—What sort of a bamboozingly story is this you are

telling me?” thought Alice “Do you pretend to say, landlord, that this harpooneer is actually

engaged this blessed Saturday night, or rather Sunday morning, in peddling his head around

this town?”

Presently she began again. “Ka-la! Koo-loo!” (she was rather glad there WAS no one listening,

this time, as it didn’t sound at all the right word) “Stand up, Tashtego!—give it to him!” (and

158	 Chapter 9

she tried to curtsey as she spoke—fancy CURTSEYING as you’re falling through the air! Do you

think you could manage it?) “Stern all!”

“My God! Mr. Chace, what is the matter?” said poor Alice, and her eyes filled with tears again

as she went on, “we have been stove by a whale.” cried Alice, with a sudden burst of tears,

“NARRATIVE OF THE SHIPWRECK OF THE WHALE SHIP ESSEX OF NANTUCKET, WHICH

WAS ATTACKED AND FINALLY DESTROYED BY A LARGE SPERM WHALE IN THE PACIFIC

OCEAN.” (Richardson 2013)

In case the remarkable nature of Richardson’s enterprise is not evident: he created

this new book by writing a program that replaced all of the dialogue—that is, all the

quotations—in Alice in Wonderland with quotations of similar length from Moby-Dick.

Of course, at the core of this project was his program’s computational identification of

which parts of the text were quotations, the same ability we just developed using regu-

lar expressions and a tiny bit of Python code. In chapter 15, “Text III: Advanced Text

Processing,” you will be invited to do a similar sort of project, using not only what you

have learned about regular expressions but also the capabilities of the TextBlob library,

which are covered in that chapter.

[9.5]  Counting Words with Regular Expressions

The hard part of the chapter is done. All that remains is to apply regular expressions to

some other problems that have already been encountered. There are a few additional

symbols to introduce, but not many.

Let’s return to the problem of counting words. Recall that we found all strings that

were separated by whitespace by using the split() method. Specifically, if we wanted

to split Pride and Prejudice into words, and we are continuing the Python session from

earlier in which pride contains the entire text of the novel, we could just do this:

pride_words = pride.split()↵

Let’s see how many words there are:

len(pride_words)↵

Very good. But we might decide that this method isn’t the best one. This method

counts over-scrupulous and three-and-twenty as single words. Furthermore, if there’s a

punctuation mark (or more than one) at the end of a word—such as a comma, a period,

or an exclamation point—that is included with the word. Of course, that doesn’t affect

the word count in its simplest sense, but if we start attempting to determine other statis-

tics (such as average word length), it will affect our analysis. So let’s shift our definition

Text II	 159

of a word. Instead of asserting that a word is whatever lies between whitespace, let’s say

that a word is a sequence of letters. The lowercase letters are [a-z] in regular expression

syntax, and both upper- and lowercase letters are [A-Za-z] (or [a-zA-Z] if you like; it

doesn’t matter if you put the uppercase or lowercase letter range first). One or more of

these letters is, for us, a word. Recall that if we want zero or more, we should use *. For

one or more, there’s another special symbol, +. So, try this:

pride_words_2 = re.findall(r'[A-Za-z]+', pride)

len(pride_words_2)↵

Now we have a few more words. This shouldn’t be a surprise because we were expect-

ing that where we had three-and-twenty in the previous list, we would have three dif-

ferent words in the new list. If you check out a slice in the middle of the novel (e.g.,

pride_words_2[4000:4150]), you can see that words are now stripped of their punctu-

ation. Even Mr. is reduced to Mr—and the possessive s is split off as a separate word too.

In addition to the programming experience that you gain, there’s an important point

here. One method of counting words is not inherently better than another method. It

depends upon how you have defined a word and whether that definition is a sensible

one for the type of research or art you are undertaking. It also depends on whether your

definition of a word is consistent with previous scholarship. In the analysis we have

done here, we are taking a particular perspective and are being strictly lexical. We are

using the properties of characters to figure out where the words are. Is boathouse one

word, and should it be even if we spell it boat house? From a cognitive standpoint, and

from the standpoint of orality, it might make sense to count both spellings as being one

word. But we can’t easily implement this on the lexical level unless we create a special

case for that one phrase or word and for every such phrase or word. Any lexical method

will count the phrase with a space in it as having two words.

The most important matter here is that if you intend to count words and compare

your results to those of another researcher, you had better make sure you are using the

same definition of a word. Replicating some of the other researcher’s results is a good

way to confirm this.

This discussion of counting words will be continued in chapter 15, “Text III:

Advanced Text Processing.”

[9.6]  Verifying Palindromes—This Time, with Feeling

Now, armed with knowledge of regular expressions, we’re ready to fix our palindrome

validation process so that it considers only letters and numerals, not punctuation

160	 Chapter 9

marks and whitespace. What we will do is prepare the string to be checked so that all

the punctuation marks and whitespace have been removed from it.

To get this working, we’d basically like to remove everything except letters and

numerals. Letters, numerals, and the underscore character _ are referred to in regular

expression terms as word characters. Everything else is a nonword character. And we have

ways of indicating both: \w is a word character, whereas \W is a nonword character.

So one way of describing what we’d like to do is as follows: replace all nonword

characters with nothing.

We have a way in Python of replacing all occurrences of some pattern with a string.

It’s the sub() method of re. And we know that what we’d like to replace is one or

more occurrences (+ is the correct quantifier to use, remember) of nonword characters

(\W) with nothing. Nothing, in this case, is written out as two straight single quotes ''

because it is the empty string:

test = 'Here is a nice string. La la la.'

re.sub(r'\W+', '', test)↵

That looks pretty good. We can bundle it up as a function called prep():

def prep(text):

 return re.sub(r'\W+', '', text)↵

Now, paste your three palindrome verification functions back in and try them out in

the following way to first process the text and then check it:

palindrome = 'Star comedy by Democrats.'

pal(prep(palindrome))↵

otherwise = "This is almost a palindrome . . . er, actually it's not."

pal(prep(otherwise))↵

In the second case, I used double quotes to surround the string because it has an apos-

trophe in it. After you try these, you should also check to see what prep(palindrome)

and prep(otherwise) return.

This chapter only provides an introduction to regular expressions, meant to be good

enough so that learners can continue exploring on their own. There are plenty of good

resources online that describe all the quantifiers and special characters (along the lines

of \w and \W) that regular expressions have to offer. You can also capture parts of what is

matched within a regular expression and then do something with those captured sec-

tions. There are anchors to indicate the beginning and end of lines that can be used as

Text II	 161

well. In addition to defining your own character classes such as [aeiou], there are stan-

dard character classes that can be used. Lots of fun remains; this chapter is just meant

to persuade those who want to deal with text, whether from an artistic or a humanistic

perspective, that regular expressions are powerful and that using them is within reach

of beginning programmers.

[Exercise 9-1]  Words Exclaimed

Using the two books we’ve worked with in this chapter, write (very short) bits of

Python code that will locate all words exclaimed—that is, every word that is followed

by an exclamation mark. Of course, the full exclamation is usually a sentence rather

than a single word, but begin by figuring out how to identify individual words that

are immediately followed by exclamation marks. After you have lists of such words for

both Pride and Prejudice and Leaves of Grass, figure out what the average length of these

words exclaimed is for both books. Finally, bundle up your code into a function that

determines the average length of these words exclaimed for any text when that text is

passed into the function as a string.

[Exercise 9-2]  Double-Barreled Words

Whether we consider them one word or two, we find sequences of characters such

as great-grandsons in both Leaves of Grass and Price and Prejudice. For the purposes of

this exercise, let’s call these double-barreled words and determine that we are only

interested in words with one hyphen in them; we won’t continue to triple-barreled or

higher-barreled words. Using the two books we’ve worked with in this chapter, write

(very short) bits of Python code that use regular expressions to find all double-barreled

words. Recall that when you use the hyphen in a regular expression, as in [a-z], it

has a special meaning. So if you want to actually match a hyphen character, you need

to escape it by placing \ before it, like so: [aeiou\-]. That means you are indicating

the hyphen itself, not using the hyphen as part of the syntax of your regular expres-

sion. The expression [aeiou\-] will match every (full) vowel and will also match the

hyphen. After you have your lists of double-barreled words, figure out the average

length of these for both Pride and Prejudice and Leaves of Grass. Finally, bundle up your

code into a function that determines the average length of these double-barreled words

for any text whenever that text is passed into the function as a string.

[Exercise 9-3]  Matching within Text

Grab a text file online (or from your system) that has several occurrences of standard-

ized texts—specifically, dates. You can find a page full of forum posts, for instance.

162	 Chapter 9

Often, older ones are better for this purpose because many modern-day forums tell

you how long ago something was posted. You can also use your own directory listings,

including the -l option (ls -l) on GNU/Linux or Mac OS X. Write a regular expression

that will match these dates but not other parts of the text. Try out your regular expres-

sion in a text editor to ensure that it works. The right answer will depend on the date

format used in your particular data.

[Free Project 9-1]  Phrase Finding

Do this project at least four (4) times. Having done the previous three exercises, develop

a phrase finder of your own that locates a large number of phrases in a book-sized

document: hundreds, probably, but at least dozens. I don’t mean phrase in the most

general sense here. “Every phrase used to describe an animal” will be too challenging

to detect; “individual words that come before a comma” will probably be too limiting

to be interesting. You should figure out what sorts of phrases are compelling to locate

and list from your own standpoint. Among those, choose one sort that can tractably

be found using regular expressions. Run your phrase finder on several book-length

documents, including some others besides pride and leaves. You can find phrases

that give you some humanistic insight into texts, if you like, or you can find ones that

are pleasing to read, silently or aloud. If you want to stretch into new regular expres-

sion territory, look ahead to 9.7, Elements of Regular Expressions, for an incomplete

reference.

[Free Project 9-2]  A Poetry versus Prose Shoot-Out

Try several approaches as you work on this project, settling on the one you find most

interesting. At this point, you should still have the variables pride and leaves defined

as the entire text of the novel and the book of poems. The free project is to analyze

and compare these texts in a way that you see fit, using your existing knowledge of

regular expressions and expanding that knowledge if you like. You can try to lexically

determine the length of sentences (all those references to “Mr.” Bennet may make that

difficult), for instance. Or you can look for certain words, or sets of words, and compare

what percentage of the text they take up in each case. Some of the simplest and most

commonly overlooked words (articles or pronouns, for instance) may actually be very

interesting to consider; avoid manually assembling large sets of nouns, verbs, or adjec-

tives. Again, you don’t need to use techniques that haven’t been discussed already, but

if you’d like to, check out the very next section.

Text II	 163

[9.7]  Elements of Regular Expressions

[9.7.1]

Having introduced regular expressions and a few of the first ways you may wish to

make use of them, I will now try to break down the main elements you can include in

a pattern (also known as a regular expression) a bit more systematically. Even in this

section, I am not aiming to supply an exhaustive list or a reference. This isn’t even a

thorough introduction. Instead, I’m trying to clarify some of the terminology and give

a few more examples of elements in each category. This will, I hope, make it easier for

you to look up more about regular expressions online or offline and make better use of

them as the need arises.

[9.7.2]  Literals

A literal in a regular expression is the most straightforward element: It means, “I liter-

ally want to match this particular character or string.” For instance, when you searched

for all occurrences of a in Pride and Prejudice, the a you typed in and searched for was

a literal. Similarly, searching for the sequence of characters dance involves using that

literal string as your pattern.

When you’re looking for a letter, it’s easy to specify the literal, but some special

characters require a special presentation when they occur in a pattern. The way to

express a literal newline is \n, for instance. Because the backslash character, \, has a

special purpose in regular expressions—it is used to indicate things like the newline,

word boundaries, and so on—it needs to be expressed as \\ when you are searching for

a literal backslash. There are other special characters, or metacharacters, that are used in

patterns. These include [and], which are used to define character classes. They can

be expressed literally as \[and \] in a pattern. It’s similar for other metacharacters,

including the . that stands for “any character.”

The reason I asked you to use raw strings such as r'\W+', rather than '\W+', is that

the backslash character has a special purpose both in regular expressions and in the

standard (nonraw) sort of Python string. Either one of the previous strings, raw or non-

raw, will work in the previous case, but if you didn’t use raw strings and you wanted to

match a literal backslash, you’d have to write it as \\\\. What a mess! It’s better to just

use raw strings when specifying patterns.

If you are only intending to search for literals, you don’t need to use regular expres-

sions at all, whether in your text editor or in Python. The power of regular expressions

comes from being able to combine literals with other elements.

164	 Chapter 9

[9.7.3]  Character Classes, Special Sequences

As discussed, square brackets can be used to specify a set of characters, or ranges of

characters, that will all match. Thus [0-9] will match any numeral, any decimal digit.

As it happens, there is an abbreviation, a special sequence, for this character range,

as with several other ones that are often used. For the digits, it is \d. You don’t need to

remember that; it’s just a convenience for those who want to match digits very often.

Other useful special sequences include \s to indicate whitespace (s is for space) and \w

to indicate word characters—that is, alphanumeric characters. If you want all nonspace

characters, use \S. Similarly, \D matches nondigits and \W matches nonword characters.

These can be written out in extensive form, as character classes with square brackets

around them, but as these classes get more elaborate it becomes more useful to know

these short ways of indicating them. There are several other special sequences, includ-

ing, for instance, \b to match any boundary (hence the b) between word characters

and nonword characters. As you might expect, \B matches anything that isn’t a word

boundary.

If you want to match several specific letters, for instance, both a and p, you can place

them directly in brackets: [ap]. We have done this with the five full vowels already.

Finally, you can put character classes together with literals to make a pattern. Thus

[5-9][ap]m will match 5am 6am 7am 8am and 9am as well as 5pm 6pm 7pm 8pm and

9pm.

Character classes can have negated characters or character ranges in them: [^0]

means everything but 0 and [^A-F] means everything but the capital letters A through F.

And, of course, the dot or period by itself stands for everything but a newline.

[9.7.4]  Quantifiers and Repetition

We have used two common quantifiers, * meaning “zero or more of these” and + mean-

ing “one or more of these.” There are two more quantifiers. You can use ? to mean

“zero or one of these”; in other words, the part of the pattern to which this quantifier

applies is optional. Thus travell?er will match either spelling of this word, traveler or

traveller.

The most complicated of the quantifiers uses curly braces and specifies that the

pattern must occur some number of times but no more than some other number of

times. Using this quantifier, you can specify the pattern Kha{3,7}n! which will match

“Khaaan!” as well as “Khaaaaaaan!”—and will also match the name of Captain Kirk’s

nemesis if it has four, five, or six consecutive occurrences of a. But it won’t match

“Khan!”, “Khaan!”, or any version of the name with more than seven occurrences of a

in it. In simple cases, you can “manually” build a pattern using the other quantifiers.

Text II	 165

For instance, the pattern Khaaaa?a?a?a?n! works exactly the same way as that previous

pattern. It’s messier, but if you want to write something like that to start—and you can

get your pattern working—you can then refactor it, as with any other code, and end

up with a tidier regular expression later in the process. A final note about this compli-

cated quantifier is you can leave off either of the two numbers. The pattern Kha{3,}n!

covers all exclamations of Khan’s name with three or more occurrences of a included,

no matter how far the name is extended. If you use Kha{,7}n!, the pattern will match

from “Khn!” up to “Khaaaaaaan!” because zero to seven occurrences of a will be fine.

[9.7.5]  Grouping Parts of Patterns

Although we aren’t diving into this in this book, it’s possible to group parts of a pattern

together using parenthesis and this can be very useful to do. There are lots of reasons

to group parts of a pattern when you’re using regular expressions within a program,

but I will focus on what’s probably the simplest use of grouping. It allows you to apply

a quantifier to whatever part of a pattern you prefer—not particularly a single literal, a

single special sequence, or a single character class.

To demonstrate this, I’ll provide a pattern that will match any sequence of five or

more three-letter words in a text. This is a pattern of specific professional interest to me,

as I’ve been writing a poetry book called All the Way for the Win which consists entirely

of three letter words. Here is the pattern:

\b(\w\w\w\W+){7,}

I’ve specified that whatever we match needs to start at a word boundary (the \b) and

then have five or more occurrences of the next part of the pattern, which I’ve grouped

using parenthesis. This group has three word characters in it followed by one or more

nonword characters, which will include spaces but also punctuation. I then use the

fancy curly bracket quantifier to specify that I am looking for seven or more of what’s

in the parentheses, occurring in a sequence.

I could improve this pattern in a few ways to make it more general. Right now, it

will match “words” like 007 that I don’t happen to be interested in because they aren’t

three-letter words; in fact, that one doesn’t have any letters at all in it. But that’s a first

example of how to use grouping and why it might be of use to you. I was quite taken

aback when I used this pattern to search through the Enron corpus of corporate emails,

finding that someone had excitedly written the phrase “YOU ARE THE MAN FOR THE

JOB” (just like that, in all caps) to extend an employment offer.

Groups can be used for many other purposes, not just finding sentences like this

one. For instance, you can specify several and, in your Python program, access what

166	 Chapter 9

is matched in each group, manipulating the data separately. Do start applying those

parentheses when you feel ready to try it out. In many cases, though, you can effec-

tively use several simpler regular expressions in different parts of your program. So

don’t let the complexity of grouping keep you from exploring what you can do with

regular expressions.

[9.7.6]  More on Regular Expressions in Python

Hopefully this chapter, and this section of it, provide a running start. So far, I have not

mentioned a few of some of the more often-used aspects of regular expressions. There

are additional metacharacters. The ^ allows a match only at the beginning of a line and

the $ only at the end of a line. There is also an “or” operator | such that the pattern A|B

will match A as well as B—that is, A or B are both fine. These and other aspects of regu-

lar expressions are all very useful, but there are always limits to what can be explained

alongside the rest of the artistic and humanistic computing in this book. For another

explanation of how regular expressions work in Python—one that is longer and more

comprehensive—I suggest the helpful how-to in the Python documentation for the re

library, which should be easier to digest with this chapter as a foundation:

docs.python.org/3.8/howto/regex.html

[9.8]  Essential Concepts

[Concept 9-1]  Explore Regular Expressions in an Editor

You should understand the basic, practical way to develop regular expressions (by try-

ing them out in a text editor) and then understand how to include the ones you have

developed in a program.

[Concept 9-2]  Patterns Go Far beyond Literals

Regular expressions open up a wide range of possibilities that go beyond a simple search

string—a pattern that is a literal string. At the same time, they are a simpler formalism

than computer programming in general. Once you have understood the way regular

expressions extend the traditional idea of finding a plain old string, and once you are

comfortable experimenting with regular expressions, you can develop your skills and

strengths further as you explore.

http://docs.python.org/3.8/howto/regex.html

[10]  Image I: Pixel by Pixel

[10.1]

In this chapter we’ll look at very simple ways of modifying and analyzing image files

in a standard, widely used format. This chapter and the next deal with low-level image

manipulation, showing how it can be scaled up to work on large numbers of files (using

iteration). The manipulations covered are the same as some of the ones implemented

in Photoshop and the Glimpse editor (a free software program for photo editing). In

chapter 11, “Image II: Pixels and Neighbors,” there is a further opportunity for the

analysis of collections of images. In chapter 14, “Image III: Visual Design and Inter-

activity,” different techniques for drawing lines and shapes, and for producing simple

animations, are covered. The work in chapter 14 is done using Processing, an ideal

language for computational visual design. Processing is introduced in chapter 12, “Sta-

tistics, Probability, and Visualization.”

Images can be represented in different ways, but the ones we’ll consider in this chap-

ter are represented as grids or rectangles of pixels. This bitmap representation is a very

common one for images. While there are also vector-based representations and other

ways of representing images, everything that is displayed on a modern-day computer

screen is represented in this bitmapped way, at least at the final stage of display and

often earlier.

The advantage of focusing on low-level, Photoshop-like manipulations is that the

programming needed to accomplish these is very much like that needed to analyze cer-

tain important properties of images. For instance, we will write a short program to red-

den images—to add red to every pixel. We will also write a short function to determine

the redness of images so one can be compared to another. This means we can iterate

through large numbers of images and find the reddest one. This is a technique that can

be built upon to do other types of meaningful image analysis.

168	 Chapter 10

Another advantage is that this work builds on our existing experience with numbers

(integers and floating-point numbers) and with strings and lists. A number is truly a

single data point, and just as a point, geometrically, has no length or width, a number

by itself also has no dimension. Lists and strings are sequences and are one-dimen-

sional, like lines. We can speak of what is to the right or left of a certain element, but if

we do that, it doesn’t make sense to speak of what is above or below it. As we encounter

images, the dimension increases again. An image, like a rectangle, has both width and

height, and it does make sense to ask what is to the left of, to the right of, above, and

below a particular pixel. One of the ways that programming and abstraction can help

us generalize involves generalizing to more dimensions.

[10.2]  A New Data Type: Tuples

To prepare for working with images, we’ll introduce a new data type that is used to

define the size of an image, the position of a pixel, and the four-part (red, blue, green,

alpha) color of a particular pixel.

Haven’t heard of the “color” alpha? The alpha value is used to control the opacity of

a pixel. At the minimum value, a pixel is completely transparent—so it doesn’t matter

what the other three values are. At the maximum value, nothing will show through.

This alpha value isn’t of course really a color, but it’s treated as a color value.

Tuple is the generalized name for pairs, triples, quadruples, and so on. Instead of just

providing a number such as 42, a tuple allows you to pair together 42 and 17 in the

form: (42, 17). So, for instance, if you want to specify a coordinate in two-dimensional

space, it would be quite a good idea to use a tuple with elements—a pair, such as (42,

17). If you needed to specify a point in three-dimensional space, a triple or tuple with

three elements would be great to use—for instance, (7, 6, 14). Try this out in your Jupy-

ter Notebook:

twod = (42, 17)↵

threed = (7, 6, 14)↵

Now, type twod to see the value you’ve given to that variable, and, similarly, check out

the other variable’s value.

You may notice that tuples seem very similar to a data type we have already dis-

cussed, the list. In fact, any list can be converted to a tuple and vice versa. But a tuple

does differ from a list in certain ways. It has a fixed number of elements and can’t

grow or shrink as a list can. The values of the elements with the tuple also cannot be

Image I	 169

changed. Thus, it is immutable. I’ll explain some more about why this type is useful in

a bit, but these are the basic differences.

You can access individual elements of a tuple, just as you can with lists. Remember

that we used [-1] at the end to get the last element of a list? Try typing twod[-1] and

threed[-1], and make a guess about what will happen before you press Shift-Enter.

You can also try twod[0] and threed[0] to get the first element, also known as element

number 0—the element at offset zero.

So, a tuple is a list-like data type with a fixed number of elements. The other thing

I mentioned is that while you can read or access individual elements, you can’t change

those elements by assigning new values to them. You need to build a new tuple if you

want one element to have a different value. Try this:

threed[0] = 8↵

The message you get is quite informative. Try this instead:

alist = [1, 2, 3]↵

alist[0] = 17↵

You’ll see that there is no error. To see what this assignment does, type alist, take a

guess about what will result, and press Shift-Enter.

Note that the immutable nature of tuples doesn’t prevent us from producing many

tuples as we loop or iterate. To see that it’s possible to produce numerous tuples by

iterating, try these two lines in the interpreter:

for i in range(5):

 print((i, 2, 3))↵

The outer pair of parentheses belongs to the print() function, while the inner pair

shows that what is being printed is a tuple—in this case, specifically, a triple.

Why are these two very similar data types, list and tuple, available in Python? To

some extent, it’s because it’s possible to be more computationally efficient with an

immutable data type (such as a tuple) than with one that can be changed (such as a

list). But there’s another important reason, too, which has to do with people rather

than with computers.

Sometimes it just makes sense to define an immutable sequence of values. If we

know of a pixel’s coordinate within an image, say, (12, 502), we can’t remove one of

the numbers from it—to get (502)—or add a number to it—to get (12, 502, 27)—and

have that coordinate remain meaningful in the way the original pair was meaningful.

We probably shouldn’t modify just its horizontal or just its vertical position, either; in

170	 Chapter 10

certain special cases, that makes sense, but in general it’s most reasonable to consider

that the pair of coordinates is “a thing” and to provide the entire new coordinate. A

tuple can do more than just enhance our computer’s efficiency; it can help us think

about a problem by making certain things, which are seldom sensible, difficult and by

making other things, which are often sensible, easy.

This is a major justification for putting type systems in place. They provide a light-

weight means of checking programs during their development, providing help to pro-

grammers. Although they don’t do everything necessary to ensure that a program is

correct, they can help. For instance, if you define a Celsius temperature that is 'hello'

and then try to convert this to Fahrenheit, you will get an error. See for yourself by

quickly typing in a definition of the conversion function. You don’t even need to

include your custom error:

def to_f(c):

 return ((9/5) * c) + 32↵

Now, try the conversion:

to_f('hello')↵

The error message isn’t extremely informative in this case, but those who know

something about types can see that the problem has something to do with strings and

integers. And, essentially, it does: we tried to ask for the Fahrenheit value of 'hello', a

string. Python helped us out by producing an error. This was a helpful response because

what we were asking was actually nonsensical. Python doesn’t know anything about

the word hello specifically. It was the conflict between different types (strings and inte-

gers) that allowed this helpful error message to be produced.

We now know about three different types of sequences in Python: lists, strings, and

tuples. We know that double() works if it is given either a list or a string as an argu-

ment. Go back to the code for this function (retrieving it from your earlier Jupyter

Notebook session and pasting it into your new session) and check to see if double()

will work on tuples.

[10.3]  Generating Very Simple Images

To help reveal the link between generation and analysis, we’ll create some images

from scratch. Initially, these will be images that are entirely of one color. We’ll use the

Python Imaging Library (PIL). This really isn’t what PIL was made for; it’s intended to

allow the processing of images that were created in a drawing program, were produced

Image I	 171

by a camera, or came from some other source. Still, to get a feel for how it works and

how computers work with images in general, we’ll use it to program a very simple

image generator. It’s simple enough that we can do it in Jupyter Notebook.

Although PIL is not part of “core” Python, when you install Anaconda, it is included;

no extra installation steps are needed. The first step in writing some code is importing

the class we need, Image, from the Python Imaging Library, PIL:

from PIL import Image↵

There’s no outcome, except that we now have access to the Image module. Next, we

create our first image, which will be labeled ourimage:

ourimage = Image.new('RGBA', (100, 100), 'black')↵

This is actually all it takes to create an image. Because we haven’t yet saved the

image, it exists only as a variable. We can’t find it in a folder somewhere and open it up

in an image viewer—not yet. But we can see the value of our variable in Jupyter Note-

book. Be sure to guess what this will look like before you press Shift-Enter!

ourimage↵

Here is an equivalent way to write that single line of code that provides labels (vari-

able names) for each of the three arguments to Image.new(). Try typing it in, so you

get a bit of practice meaningfully labeling values with variable names:

mode = 'RGBA'

size = (100, 100)

color = 'black'

ourimage = Image.new(mode, size, color)↵

Please do satisfy yourself that it is effectively the same as the earlier line. Labeling

each of the arguments, and then using those labels in Image.new(), makes this ver-

sion clearer. If you are writing code to share with others or for your own use over time,

something like the latter version will be preferable. To poke around, it’s perfectly fine

to use the shorter version, but even if you are the only person who will read the code, it

could help you to write in the more extensive form. After typing out this longer form,

view the image to make sure it looks the same as it did before:

ourimage↵

Now, let’s save the result and make sure that our line of code worked:

ourimage.save('allblack.png')

172	 Chapter 10

You should be able to open allblack.png (you’ll need to find it in whatever direc-

tory you are using with Jupyter Notebook) and see the same small black square, 100

pixels on a side. You can use your standard GUI (i.e., you can just click on the icon) to

open this up in whatever image-viewing program you usually use.

Here’s what is happening in ourimage = Image.new('RGBA', (100, 100), 'black')

and in the extensive version of the same code. The variable ourimage is being declared

and assigned a particular value. As with any variable name, what we call this image is

up to us; it could have been fred. It was just meant to be a somewhat meaningful label.

The value assigned to ourimage is an Image object, one that is created using the new()

method of the Image module. The new() method is being given three arguments here.

The first argument is a string indicating the color mode, which is why we used the

variable name mode in the extensive form of the code. RGBA (red, green, blue, alpha) is

the main color mode we’ll use in this book. It’s a common and useful one.

The next argument is one of those sequences—the type that was just introduced, a

tuple—and has two elements indicating width and height. In the extensive form of the

code, we labeled this pair with the name size. In our case, the width and height are the

same, so the image created is a square.

Finally, the last argument indicates what color the whole image should be. We could

use a more cryptic (but in certain ways more versatile) representation of color, and we

will in a moment. It happens, though, that PIL understands the string 'black' to mean

the same thing as the hexadecimal triplet with minimum values for red, blue, and

green—as little red, blue, and green as possible—and with full opacity, so that nothing

shows through it. So though we can’t ask for the Fahrenheit conversion of 'hello',

we can ask for the color 'black' because this method’s interface is written to allow

this. Sensibly, we used the variable name color to label this when we wrote the code

in extensive form.

By now, it’s clear that (100, 100) means a 100 × 100 square, but which of these

numbers indicates width and which indicates height?

You could search the Web to find out, but that would actually take longer than

exploring Python and PIL yourself and determining the answer through experimenta-

tion. Just go back to the line beginning ourimage = and edit it. Change one of the two

(100, 100) values to something other than 100. For instance, change one of them to

15 or 200. (Changing it to 101 wouldn’t be a very good idea because it would be really

difficult to see the change that you made.) Press Shift-Enter on that line, and then

Shift-Enter on the next line—ourimage—to view the newly created image in Jupyter

Notebook. You can tell by looking at the change you made which number corresponds

to the horizontal or x dimension and which to the vertical or y dimension. If you forget

Image I	 173

at any point, create a (200,100) rectangle and see whether it’s wider than it is tall or

taller than it is wide.

This is a good point to mention some other ways to “ask Python itself” about how it

works. To take one example, if you want to know how the len() function works, you

can have Python offer help by using the built-in help() function:

help(len)↵

When you ask for help, you aren’t actually calling or invoking the function. You’re

treating the function as something to be inquired about. For this reason, you need

to leave off the parentheses that usually go with len(). What results is brief docu-

mentation of the function—and you already know how it works, of course. There is

much more elaborate documentation for more elaborate components of Python. For

instance, you can ask for help with the entire Image module:

help(Image)↵

That is probably way too much help to be helpful! Instead, try asking for help with just

the Image.new() method:

help(Image.new)↵

There’s some more focused help. The language is a bit technical because it is meant to

be precise, but you can see there is built-in documentation. One thing it explains is that

the third parameter is optional, and black is the default color for an image.

It happens to be extremely easy to add your own help information when you write

a function. Just add a string (officially known as a docstring) immediately after the first

line of the function definition and before any other code. Try it out with the detective

tax function from 6.2, A Function Abstracts a Bunch of Code:

def tax(subtotal):

 "Return the amount of detective tax due on the given subtotal."

 return subtotal * 0.08875↵

Now see what happens when you ask for help regarding your own function:

help(tax)↵

Including a docstring can be extremely helpful. You could figure out what the func-

tion is doing by going through the (one line of) code, but there is nothing else in the

tax() function that would explain why it was written—that this function computes

the tax on detective services. This is why comments, generally, are useful. In Python,

174	 Chapter 10

the most important comment-like text you should write is the docstring that briefly

explains the operation and purpose of each function you develop.

You also may want to know, for a specific Python object, what methods and attri-

butes that object has. For instance, what can we do with a list? To find this out, we

can ask for the directory of a list using the dir() function. Any list will do; let’s use the

empty list:

dir([])↵

As you can see, this generates a list itself. It’s a list of all the attributes and methods

that apply to lists. For instance, you can see count() in this list, albeit without its

parentheses. It’s nice to know about it, but this list by itself doesn’t tell us what count()

does. However, we can ask for help to see the docstring of count():

help([].count)↵

Is that clear enough? Can you try using the count() method with the list

[1,5,2,4,1,3,1] to see how many occurrences of 1 there are in the list? Give it a try

in Jupyter Notebook.

Checking docstrings and using dir() is not a substitute for a tutorial, or for conve-

nient and more extensive reference documentation, which is easily available online,

but it does show you that as long as you have a Python interpreter such as Jupyter

Notebook, you have the ability to reflect upon and get some help on the Python pro-

gramming language itself.

To return to the task at hand, let’s look at the alternative, more generally useful way

of indicating the color that was mentioned. Try the first line again, the short version of

the assignment, replacing the string 'black' with a quadruple, (0, 0, 0, 255). This

indicates the same color (black) in a different way (the minimum amount of red, blue,

and green—all zeros—followed by the maximum opacity, 255). For simplicity’s sake,

when we generate images, they will all be completely opaque; the last of the four color

values will always be 255.

Confirm that your code works by viewing the image in Jupyter Notebook. It doesn’t

matter what the dimensions of the image are, so long as it’s large enough for you to

see it.

Next, try changing the color from (0, 0, 0, 255) to (127, 127, 127, 255)

to produce a medium gray instead of black. Assign the image you have generated to

the variable allgray. If you use a different dialect of English or would like to affect

using a different dialect of English, you can call this variable allgrey. By the way,

PIL will helpfully understand both 'gray' and 'grey' to mean the color (127, 127,
127, 255).

Image I	 175

Now, go back to the line beginning ourimage = and make the image redder by

increasing the first number in this tuple. Specifically, use (200, 127, 127, 255) as

the color. Assign this image to the variable allrose. Already, with this simple step, and

even though we are creating a completely uniform image, we are making use of a color

that, unlike 'white' and 'gray', is not represented by PIL as a string. Using tuples, it

is easy to access any of the 256 × 256 × 256 colors (not counting the alpha values) that

typical contemporary computers support.

You can change the individual pixels of the image by setting them to different qua-

druplets. Try this:

allblack = Image.new('RGBA', (100, 100), (0, 0, 0, 255))↵

allblack↵

Now, remember that when we looked at the help information, it explained that black is

the default color for new images? Try to create the same rectangle with no color speci-

fied to see if it gives the same result:

default = Image.new('RGBA', (100, 100))↵

default↵

This is a strange result! Let’s use a special means of reading one particular pixel—we’ll

pick the one in the upper left corner, at (0, 0)—to try to figure out what happened:

default.getpixel((0,0))↵

Aha! When you see this quadruple, you should be able to figure out that the image

is actually black. The red, green, and blue values are 0. However, it’s also completely

transparent because the alpha value is 0 as well. So it’s a very odd type of black. If we

were using the RGB color mode, we wouldn’t have run into this issue.

Let’s go back to our manually created version, now that we’ve discovered this wrin-

kle. Now we’ll set a different color for a central pixel:

allblack.putpixel((50, 50), (255, 255, 255, 255))↵

Take a look at the result. If the change isn’t clear, you can save the image, open it in

your standard image viewer, and zoom in on the middle of it:

allblack.save('almostall.png')↵

You should be able to see (if your display and your eyes are both working very well)

that there’s a single white pixel in the middle of this image. That pixel at coordinate

50, 50 has been set to have the maximum red, blue, and green values (all 255) and also

is completely opaque (255 for the last element, the alpha channel).

176	 Chapter 10

Recall that the computer can do things one hundred times about as easily as it can

do them once. And recall that you can generate a sequence starting at 0 and ending

with 99 using range(100). With this is mind, can you write a program that extends

this single-pixel bit of code so that a horizontal line is drawn across the middle of

the image? Drawing the line can be done in the interpreter with two lines of code,

although you need to use some existing image (such as allblack) or create your own,

and after you’re done drawing the line you need to save the image as a file.

Here’s a hint about how to proceed, if you can’t think of a first step to take. First,

realize that you could write a hundred lines of code to accomplish this in a straight-

forward but certainly not very elegant way. It would involve writing something very

similar to allblack.putpixel((50, 50), (255, 255, 255, 255)), but instead of

(50, 50), the first line would have a different coordinate, the second line would have

yet another coordinate . . . and the last line would have yet another coordinate, too.

Without actually writing all one hundred lines (which would be very tedious, even

using some sort of copy-and-paste method), think about what those lines would be.

Then, write a loop that, using iteration, will do the same thing in two lines rather than

in one hundred.

You’ll want to finish by saving the image as oneline.png. The process is the same

as that for saving the earlier image file. You’ll invoke the method allblack.save()

(assuming you have called your image allblack) and will also need an argument, the

filename that you want to use.

It’s good to know that a system for modifying and analyzing images can also be used

to generate them from scratch. Using this capability provides the opportunity for some

low-level pixel setting. In chapter 12, we will begin to work with a programming lan-

guage that was made for drawing images from scratch: Processing. You’ll see how much

easier it is to draw lines (and do much more) anywhere on the image that you like, in

any orientation. And we’ll use these sorts of techniques to create not only images, but

also, in chapter 14, animations.

Our use of PIL to draw an image pixel by pixel brings up another important point

about programming and computing: what is possible isn’t always a good idea to imple-

ment. In working on projects, questions that nonprogrammers ask of programmers

often begin with, “Is it possible to . . . ?” But the answer to this question is seldom very

informative. It is possible to generate an elaborate computational drawing, such as an

image of a fractally branching tree, using Python and PIL. Unless you’re setting this as

a personal educational challenge for yourself, however, this is almost certainly a bad

and perhaps even a boneheaded idea. In Processing, this sort of image can be generated

in a few lines—and there are even easily found, well-known examples of how to do

Image I	 177

this on the Web. PIL is made for automatically doing the sort of image processing that

Photoshop does and is good for image analysis, but it is not best for drawing images

from scratch according to computational rules.

If you have the chance to collaborate with professional programmers on specification-

based projects, I suggest beginning these sorts of questions with something like, “How

difficult would it be to . . . ?” In some cases, it might be best to follow up by discussing

the question, “Would it be more sensible to use a different programming language,

library, or framework?”

[10.4]  Pixel-by-Pixel Image Analysis and Manipulation

For simplicity’s sake, even though we created one nice, rose-colored rectangle, we’ll

begin this section by discussing grayscale images, images in which all the color values

have the same amount of red, blue, and green. We’ll use images of the same standard

format, PNG. Leaving color for later is not an unusual way to proceed. In program-

ming, it’s often good to start with simpler versions of a problem. In visual art and

design, intensity (dark and light) is usually dealt with before color.

In a PNG image, the intensity of each pixel varies between 0 (no light, a completely

black pixel) and 255 (the maximum amount of light, a white pixel). It might be easier

to think about if the range went from 0 to 100 and we could simply specify a percent-

age of light, but the 256 possible values of intensity correspond to the values that can

be stored in a single byte, which has eight binary digits (or bits). These bits can each

be 1 or 0, on or off, and because there are eight of them in order, there are 28 or 256

possibilities. If we start counting from 0, our first value, then 255 is our 256th value,

the maximum number.

It isn’t essential to know about the architecture of computers to understand how to

program them effectively; one of the types of abstraction that developers of program-

ming languages have striven to implement is the ability to think about computation

and problem-solving independent of hardware. It can be good to know that when 255

and similar values crop up, however, they are not being placed capriciously or mali-

ciously by the creators of different systems. They actually relate to underlying aspects

of computer systems. You will get to learn more about this in chapter 16, “Sound,

Bytes, and Bits.”

Some programming environments do allow for percentages or similar values to be

specified instead of numbers in the range from 0 to 255, and this can be a help to new

programmers. John Maeda’s Design By Numbers (DBN), a predecessor of Processing,

works this way. Even in this age of high-level languages and abstraction, however, there

178	 Chapter 10

are very good reasons to use the computer’s native representation. If one can only specify

an integer value between 0 and 100, any mapping that is used will be uneven and it will

not be possible to indicate many native color values (the other 155 of them). If one is

allowed to specify a floating-point number between 0 and 100, a conversion between

floating-point and integer numbers will have to take place—every time a pixel is updated.

Also, it will probably be necessary to store and work with a grid of 0 to 100 color values

apart from the underlying native values. As more intensive computer graphics processes

are added to this basic method of updating pixels, performance can suffer. Plus, the

added complexity of a system like this can provide a challenge in the development of

such a system in the first place and can make maintenance of such a system difficult.

The image manipulations discussed here are ones that affect the entire image. In

other words, we’re no longer concerned with drawing a single pixel in the middle of

an image or a one-pixel line across it. We would like to deal with global properties of

an image.

[Figure 10-1]
Nested iteration is an easy way to visit each pixel in an image. Here, the outer loop proceeds

horizontally; in this case it has gone through column 0 and 1 and is currently on column 2. At

each step of the outer loop, an inner loop proceeds through each pixel in the column. Inner loops

already visited all three pixels in column 0, all three in column 1, and the first 2 in column 2.

Image I	 179

To do so, it won’t be enough to change one pixel or (in a 100 × 100 image) only one

hundred pixels. We’ll need to visit every pixel. We can do that easily with a nested loop.

The inner loop will go through every pixel in a column. The outer loop will go through

every column in the image. It’s just iteration, of the sort we have already covered, but

now the iteration goes through two dimensions instead of just one.

To get such a loop working, let’s simply go through every pixel of an image and set

each pixel to gray—the color value (127, 127, 127, 255). We can imagine the same

sort of processes happening if the world ends up being destroyed by a nanotechnology

accident. This only takes a few lines, so let’s try it in the interpreter. There is no need

to type these next three lines in again; just review them to recall how we created an

image, set the middle pixel to white, and saved the image:

allblack = Image.new('RGBA', (100, 100), (0, 0, 0, 255))↵

allblack.putpixel((50, 50), (255, 255, 255, 255))↵

allblack.save('almostall.png')↵

To go through the entire image, it really makes sense to use two loops. If you drew a

line across the image earlier, you’ve already written half the code that is needed. This

is all the needed code, written to work with an image that is 150 pixels wide and 100

pixels tall:

rectangle = Image.new('RGBA', (150, 100), (0, 0, 0, 255))↵

rectangle↵

for x in range(150):

 for y in range(100):

 rectangle.putpixel((x, y), (127, 127, 127, 255))↵

rectangle↵

If you just opened a blank Jupyter Notebook for your work on this section, you’ll

find that Image is not defined after you input the first line. Remember, it’s necessary

to enter and run from PIL import Image at the beginning of each session. If you kept

your previous session open, Image will already be imported from the PIL module.

There are five lines in the code to create this image and set it, pixel by pixel, to gray.

The first and last are just like ones we’ve already seen, but with different names for the

Image object and the file and with a different image size. The second-to-last line is just

like the earlier line that sets the color value of a particular pixel, except that instead of

setting pixel (50, 50), it sets (x, y), and it sets the color to gray, (127, 127, 127). So the

180	 Chapter 10

real questions are what the variables x and y stand for (what values they have) and what

the two for loops are doing. These are actually the same question.

The loop specified by for x in range(150): goes from 0 to 149, assigning each

value to x in turn. So x is first 0, then 1, then 2 . . . and eventually 149, just before that

loop ends.

Within that loop, for y in range(100): loops from 0 to 99, assigning each value

to y in turn. So y is initially 0, then 1, then 2 . . . and finally 99. And y is assigned all of

these 100 values for each value of x.

That means that putpixel() is first invoked with x having the value 0 and y hav-

ing the value 0, which we can call (0, 0). The next pair is with x 0 and y 1, or (0, 1).

Then, (0, 2), (0, 3), and so on up to (0, 99). And that takes care of the first column,

the vertical line (going along all values of y) on the far left. After this, the value of x

increases from 0 to 1 and putpixel() is called with (1, 0), (1, 1), (1, 2), and so on up to

(1, 99).

If this isn’t clear, try expanding range(100) into a list by using the list() function

to cast it to this data type. You should imagine what this expansion looks like. Then,

type the expression list(range(100)) into the interpreter and see if you’re right. Hav-

ing done this evaluation, this expansion, you’re looking at all the values that y takes on

at each step through the loop with for x in range(150): at the top.

Of course, it’s much easier to create a gray image simply by using Image.new() and

by giving that method (127, 127, 127, 255) as the last argument! If you know you

want a gray image to start with, that’s the way to do it. But we’re not trying to create

a new image that is colored entirely gray; we’re trying to learn how to go through an

image pixel by pixel.

To show how this method of coloring applies generally, let’s try it again with one

small change. Instead of coloring every pixel (127, 127, 127, 255), let’s color each

pixel (x, x, x, 255). Now, the conventionally named x is the variable that tracks the

horizontal coordinate of the image, what is typically the x-axis. What this means is

that at pixel (0, 0), the value of x is 0, and this pixel will be colored (0, 0, 0). At pixel

(1, 0) the value of x is 1, and this one will be colored (1, 1, 1)—and so on. Pixel (2,

0) has x = 2 and will be colored (2, 2, 2), and pixel (100, 0) has x = 100 and will be

colored (100, 100, 100). The same coloring will be done all up and down the image

(along the vertical y-axis) because the value of the variable y doesn’t have any effect on

how an image is colored.

Think about what you expect the image to look like and then run the following

code. After doing so, open gradient.png:

Image I	 181

for x in range(150):

 for y in range(100):

 rectangle.putpixel((x, y), (x, x, x))↵

rectangle.save('gradient.png')↵

Does the image contain black? Does it contain white? Can you change the code so

that the gradient goes the other way or along the other axis? Please do!

Before continuing, let’s see how a similar function can tell us one simple, global

property of an image: how red it is. For our purposes, we’ll define redness as the differ-

ence between the total red values and the average of the blue and green values. Here’s

this analytical function, ready to work on the square images, 100 pixels wide and 100

pixels high:

def redness(square):

 all_red = 0

 others = 0

 for x in range(100):

 for y in range(100):

 red, green, blue, alpha = square.getpixel((x, y))

 all_red = all_red + red

 others = others + green + blue

 return all_red - (others / 2)↵

After typing this in, try it out on allrose.png and allblack.png, the square images

you created earlier. It should return a positive number if the red values of all the pix-

els exceed the average green and blue values. In an image that is all black, where red,

green, and blue values are equal everywhere, the answer should be zero.

This is a fine analytical function, for what it is. But it isn’t general. The image-

generating code laid out previously, and this redness() function, both are hard-coded

to images of a particular size. We’ll address that issue in the next section.

[10.5]  Generalizing to Images of Any Size

Having gone through the image rectangle pixel by pixel, we can generalize the tech-

nique for doing this. We’ll generalize it in two ways: First, by making it into a function.

182	 Chapter 10

Then, we’ll determine a way of going through each pixel that works no matter what

size the image is. It wouldn’t be very useful to have these particular width and height

values hard-coded and to only be able to deal with 100 pixel × 100 pixel images, par-

ticularly if we expect to process directories full of different images.

It happens that the size of an image is supplied by Image objects, in an attribute;

try typing:

rectangle.size↵

Just to make sure this works generally, create another image that is larger, and then try

asking for its size:

bigger = Image.new('RGBA', (500, 600), (0, 0, 0, 255))↵

bigger.size↵

Great; that’s the size of an image, provided to us in a tuple—specifically, a pair,

with the width first and then the height. Notice that we haven’t saved this image yet

by invoking the save() method, so we haven’t made it available via the file system.

However, it exists in memory here in the Python interpreter, so we can still inquire

into what size it is and do other things with it—including, eventually, saving it. When

we check the size attribute of an image, we’re asking for the size of an Image object in

memory, which might have been loaded from disk or (as in these cases) newly created.

The first element, element number zero, is the width:

bigger.size[0]↵

And of course the second element, element number 1, is the height:

bigger.size[1]↵

The same of course will work for rectangle as well as bigger; it will work for any

Image object. Knowing this, you should be able to create a general version of the code

that we wrote to visit every pixel and turn each pixel gray. The code we have works for

images 150 pixels wide and 100 pixels tall. Let’s bundle the code we have for this into

a function:

def grayout(pngimage):

 for x in range(150):

 for y in range(100):

 pngimage.putpixel((x, y), (127, 127, 127, 255))↵

Image I	 183

Try it out in Jupyter Notebook. You’ll need to define a new image, called whatever

you like, and then pass it to grayout(). Finally, you’ll need to save the result. All of

that will go like this:

test = Image.new('RGBA', (150, 100))↵

grayout(test)↵

test↵

Now that the code is conveniently bundled up, we’re ready to try generalizing the

code so that it works on images of any size. We know our hard-coded width is right

there at the end of for x in range(150): and we also know the way to get the width

of any image (using the size attribute). So, shouldn’t we replace the former with the

latter? And shouldn’t we do the same with height? See how you can make these substi-

tutions. Create a new image of some other size and test your modified, general function

grayout() on that image. You can use the image bigger, if you like, or another image

you create. Whatever image you use should have a different width and height as in the

initial grayout(); otherwise, it won’t make for a very good test case.

[Exercise 10-1]  Generalizing redness()
After completing the modification of grayout(), also modify redness() so that it

works on images of any size. First, the hard-coded values for width and height should

be replaced in the exact same way with the width and height as provided by the size

attribute.

There is an additional step for this analytical function, however, now that images of

different sizes are going to be compared. The result it returns needs to be divided by the

area of the image. Otherwise, a large image the same color as a smaller one will end up

seeming more red, according to this function.

Finally, remember to have your code, and the names of variables and parameters,

accurately represent what computation is happening and what data is being handled.

In the original redness(), there is an argument named square, but in your modified

function this image does not have to be a square. Give it a more suitable name.

Create some images in Jupyter Notebook, of different sizes and with different

amounts of red in them, to try out your function.

Having written a new grayout() and a new redness(), you have frameworks that

will be effective for many different types of image manipulations and for very high-

level sorts of image analysis. Your grayout() code traverses every pixel and makes a

change—in this particular case, just setting each pixel to gray, but, when modified,

184	 Chapter 10

doing something more interesting and useful. The code will need to be changed a bit

for some manipulations, as you will often wish to get the current pixel’s color values

rather than simply overwriting them—just as is done in redness(). As is, these two

snippets of code represent important ways to process images.

[10.6]  Loading an Image

So far, we’ve created images and then modified them. Let’s use our very simple image-

modification code, which sets everything to gray, on an image that already exists. To

do so, we’ll need to load such an image, and of course we’ll want to check to see that

we did actually load the image.

For image manipulation purposes, obtain a PNG image from the Web: the search

term “PNG” will probably be helpful. Look for something with some detail and with

different levels of brightness and for an image that isn’t horizontally or vertically sym-

metric. A photograph or a scanned image of a painting or drawing would work; line

drawings that have only black and white or images that consist only of words are not

best. Rectangles of all one color will be a particularly bad choice.

Use a Jupyter Notebook that was started on your desktop.

To begin, if this is a new session, type from PIL import Image.

Then, put your PNG image on your desktop. Rename it, using example.png as the

new name. If you started Jupyter Notebook on the desktop and placed the image there,

this will open it:

ourimage = Image.open('example.png')↵

That should load your image. If it doesn’t, the image with this name is not in the

same directory that Jupyter Notebook is using. If this expression did not produce an

error, view the image:

ourimage↵

Now, if your generalized version of the grayout() function isn’t already part of your

active session, type it in or paste it in again and press Shift-Enter. Then, try this:

grayout(ourimage)↵

This should set every pixel in the image to medium gray. It will fail if the PNG image

uses a different color model. For instance, some PNG images are not transparent, and

some are grayscale images. Most of the PNG images on the Web are of the RGBA sort,

however. If you found a PNG image that uses a different color mode, just go back to

Image I	 185

your browser and keep searching until you get an image that works. After this runs

without an error, enter:

ourimage↵

This will show you the result. Check to see if this is an entirely gray rectangle of the

same dimensions as the original image.

[10.7]  Lightening and Darkening an Image

At this point, we have a framework for doing all sorts of image manipulations, no mat-

ter what the size of the image, and we know how to load a PNG image for manipula-

tion, no matter what that image is. So, we’re ready to try a real image manipulation, of

the sort that would be done by a program like Photoshop. We will adjust an image to

make it lighter.

Let’s load our example image once more. If we didn’t, we would just have a gray

rectangle in the bucket of the ourimage variable.

ourimage = Image.open('example.png')↵

Now, let’s develop a new function that reads every pixel of an image and, for

now, writes the same color values right back to the image. This will leave the image

unchanged, of course. To do this, we’ll need to read a pixel, or get its color values. We’ve

previewed this already, so try using the getpixel() method on the image, once again,

and pass this method (0, 0) to check the color values of the upper-left pixel:

ourimage.getpixel((0, 0))↵

Because you have already found a PNG image that worked with grayout(), you will

find that the value returned has four elements (red, blue, green, alpha). This is not the

only possibility for what getpixel() might return, but we will assume this color model

for now. Also, let’s keep in mind that even when we start changing the red, blue, and

green values, we don’t want to manipulate the transparency.

Now, to sketch a function that will process the image:

def modify(pngimage):

 for x in _____:

 for y in _____:

 (r, g, b, a) = pngimage.getpixel((x, y))

 pngimage.putpixel((x, y), (r, g, b, a))↵

186	 Chapter 10

You’ll have figured out what to iterate over previously; include that, for both horizontal

and vertical dimensions, in the two blanks.

This is a somewhat misnamed function right now because it doesn’t modify the

image—or, you might say it performs the null modification, replacing each pixel

with exactly the same pixel as before. The assignment (r, g, b, a) = pngimage.
getpixel((x, y)) is a clever way of assigning four variables at once: getpixel()

returns a tuple, specifically a quadruple, and this allows us to assign its four elements

to the variables r, g, b, and a.

Try this function out to make sure it doesn’t change the image and to confirm your

understanding of the code. A function that isn’t supposed to do anything may not be

a very sophisticated test, but a mistake in entering the function could be revealed by

trying it. If there is an error, or if this function does change the image, then there’s a

problem that needs to be corrected. You can, and should, also check the file modifica-

tion date to see that the image is in fact being rewritten, even though it is being rewrit-

ten to be the same as it was before.

Next, let’s try a simple modification of modify() that will cause it to lighten images

a bit. Recall that the minimum color value is 0 and the maximum (brightest) is 255.

So if we wanted to make an image lighter or brighter, we would add something to

each color value. And we probably wouldn’t want to add a small value such as 1 or 2,

because it would be hard to notice that change. Let’s try adding one-fourth of the range

of intensities: 64. All we need to do is add 64 to each color component as we put the

new pixel.

What’s the easiest way to go about doing that?

You can, if you like, modify the values of r, g, and b by including new lines that add

64 to each. The first one will read r = r + 64 and the other two will be the same except

for the use of g and b. But there’s an easier way. Try changing the last line to:

pngimage.putpixel((x, y), (r + 64, g + 64, b + 64, a))

Remember, we don’t wish to change the alpha value. If you run the new modify()

on an image, and then save that image, you should see that it is considerably brighter.

But one thing that you won’t see, if you develop modify() as described previously, is

an error. And that seems a bit odd.

What if one the pixels you’re adjusting is completely white—with color values

(255, 255, 255, 255)—to begin with? It certainly can’t be brightened in that case. An

attempt to lighten or brighten it would mean attempting to set the color value to (255
+ 64, 255 + 64, 255 + 64, 255) or (319, 319, 319, 255). That’s not right! Pixels

can’t have that value, any more than they can have the value 'hello' or 3.14. For each

Image I	 187

pixel, there are three color values, and the color value is at least 0 and at most 255. At a

low level, trying to assign a number larger than 255 is like trying to put more than one

bucketful of water into a bucket or expecting a single coin to come up three heads at

once. There is simply not enough to hold the value—fundamentally, no circuitry with

which the larger number can be represented.

Now, while a pixel can’t have the value 'hello' and also can’t have the value

'white', we can use the string 'white' with putpixel() to set a pixel’s color values.

putpixel() determines that the string 'white' means (255, 255, 255), and it sets

the color values that way.

Similarly, putpixel() also figures out that when given (319, 319, 319), it should

set the pixel’s color values to (255, 255, 255). If any of the color values in the triple

exceed 255, putpixel() will just use 255 instead. If any of them are negative, put-
pixel() will use 0 instead of those values.

This is a form of saturation arithmetic. It is not always sensible, but it makes a great

deal of sense for making changes in color values. If putpixel() raised an error when-

ever the value was less than 0 or greater than 255, we would need to cover all of these

cases in our own code. After setting r = r + 64, we would have to test r to see if it was

greater than 255; if it was, we would need to set it to 255. And then we’d have to do

the same thing for g and b. That would be a lot of additional code. And yet when we

end up with a value greater than 255 with our r + 64, that doesn’t particularly mean

that we made a mistake. We just lightened our image into the as-much-red-as-possible

range. Here, putpixel() is being “forgiving” in a particular way, but in a way that is

unlikely to cause problems and is much more likely to help us. By the way, the same

saturation arithmetic applies to the alpha value, although because we aren’t changing

it, we aren’t concerned with this.

To show that we can generalize this function without too much trouble, I will offer

a version that works whether or not the original image has transparency—that is,

whether we have an RGB or an RGBA color model. The only reason I’ve bothered using

RGBA mode, which adds a bit of clutter, is that PNG images you’ll find online are often

in this color mode. To be as general as possible, we’d like our function to work regard-

less of which mode the image uses. Here’s one way to do that:

def modify(pngimage):

 for x in _____:

 for y in _____:

 (r, g, b) = pngimage.getpixel((x, y))[:3]

188	 Chapter 10

 new_color = (r + 64, g + 64, b + 64)

 new_color = new_color + pngimage.getpixel((x, y))[3:]

 pngimage.putpixel((x, y), new_color)↵

The first change is the addition of [:3] in line 4. This indicates that we are taking

a slice of the pixel’s color tuple, obtaining the first three elements. Slices are useful

beyond text manipulation, as you can see here. In the next line, new_color is assigned

the updated red, green, and blue values that have been lightened. Now, when we end

up sending new_color along as an argument, we would like it to have three elements

(if the original pixel had three) and four otherwise. What is done here to address this

is the addition of the rest of the original color tuple. pngimage.getpixel((x, y))
[3:] will have nothing in it if there are only three color values; if we have a transpar-

ent image, it will have the one value corresponding to the transparency. Remember,

this is a forgiving slice operation that we’re using. So we will either have nothing in

that slice (for an RGB image) or we’ll have a single value, the alpha value from the

original image.

Find a PNG image online that does not have transparency (these may not be as

common, but a search can turn one up) and try out this code to see that it will work on

images whether or not they have transparency.

Now that you’ve written a function to lighten an image, copy the code, paste it in,

change the function name to darken(), and modify the function so that it makes an

image darker instead of lighter.

[10.8]  Increasing the Contrast of an Image

How should we change an image so that it’s higher in contrast—so there is more differ-

ence between the light and dark areas?

Consider this: You’ve already done everything necessary in terms of image modifica-

tion. You saw how to lighten an image and how to darken it. Now, all you need to do

is make the lighter areas (those closer to white) even lighter and the darker areas of the

image (those closer to black) even darker.

The only question is how to determine which are the light pixels and which the

dark. Each pixel has three color values, and if the pixel is completely dark—is black—

they are all zero. If it’s white, they are all 255. The sum of these values is 0 + 0 + 0 = 0

for black and 255 + 255 + 255 = 765 for white. If we want to find pixels that are closer

to black or closer to white, we would do well to sum their color values and see whether

they are closer to 0 or closer to 765. The dividing line is 765 / 2, or 382.5. This will be

Image I	 189

the essential part of the condition we use to determine whether we want to darken or

lighten.

Go back and retrieve the generalized modify() code, which works in both RGB and

RGBA mode, and paste it in, renaming modify() to contrast(). Then, replace the line

where new_color is updated:

 new_color = (r + 64, g + 64, b + 64)

with the following:

 if r + g + b < 382.5:

 new_color = (r - 32, g - 32, b - 32)

 else:

 new_color = (r + 32, g + 32, b + 32)

The condition tests whether the color values are, overall, more light or more dark.

If the pixel is more dark, our contrast-enhancing function makes the pixel even darker.

Otherwise, it makes the pixel lighter.

Try it out: the result, even if it’s not as slick as what an image manipulation applica-

tion provides, should exhibit the increased contrast that was sought. This is the essence

of a contrast-increasing image modification.

[10.9]  Flipping an Image

Next, let’s write a new method, flip(), which performs the Flip Horizontally action

found in Photoshop and other image editors.

To flip an image horizontally, or any other way, we obviously need to read the pixels

of the image, and we certainly need to write them as well. Consider a very simple image,

two pixels wide and one pixel high. Of course, we just want to put the right pixel on

the left and the left pixel on the right. But let’s think about how we might do that. If

we read the right pixel, write it onto the left side, and then . . . we’ve wiped out the left

pixel, which we’re going to need in the next step. What needs to be done here, and in

flipping an image in general, is a classic case of the swap, exchanging values between

two variables.

Try this:

a = 17

b = 2↵

190	 Chapter 10

How do we put what is in a in b and what is in b in a? There are actually some clever

ways and nice ways to make the exchange in Python, but the general principle is to use

a temporary variable—for instance, temp:

temp = a

a = b

b = temp↵

Check to see that the exchange was made:

(a, b)↵

Having tried this swap technique on two values, let’s swap every pixel (going left

to right) with the corresponding pixel on the other side (going right to left). Before,

we used (r, g, b) to get each color value component of a pixel. Now, we can simply

put the entire triple in a single variable because we aren’t going to manipulate the

individual values. Also, the following function flips the way that iteration is done. The

outer loop is y (vertical) and the inner loop is x (horizontal). It really makes no differ-

ence, in terms of how the function operates, but it seems clearer at this point to present

this type of iteration. Finally, the following function uses two temporary variables—

again, not because it is required, but in the interest of presenting code that is as clear

as possible:

def flip(pngimage):

 width = pngimage.size[0]

 for y in range(pngimage.size[1]):

 for x in range(width):

 left = pngimage.getpixel((x, y))

 right = pngimage.getpixel((width - 1 - x, y))

 pngimage.putpixel((width - 1 - x, y), left)

 pngimage.putpixel((x, y), right)↵

Consider that width is set to the horizontal size of the image. Then, the horizontal

loop runs from 0 up to (but not including) width. Each time, left is assigned the pixel

(x, y) and right is assigned the pixel on the other side: width - 1 - x. Notice that

there is no pixel at position width; the rightmost pixel is one to the left of that position.

Hence, when x is zero, width - 1 - x or simply width - 1 is the rightmost pixel. The

calls to putpixel() swap out the left and right pixel.

Image I	 191

Obtain an image and place it in the directory where Jupyter Notebook is running,

calling it flipme.png. Be sure that it isn’t horizontally symmetric, or even close, so

you can easily tell when it is correctly flipped. Then, run the function and see what

happens:

testimage = Image.open('flipme.png')

flip(testimage)

testimage↵

Does it work? Let’s get on to the real question: Why doesn’t it work? This function

doesn’t appear to change the image in any way.

Actually, it does work. It just works too well.

As the function iterates from left to right within for x in range(width), it avidly

exchanges each left-hand pixel with each right-hand one. It does that for the first pixel on

the left and right, the second pixel on the left and right, and so on. By the time it reaches

the middle of the image, the left side and right side have been completely swapped.

Then, as the iteration continues, the function keeps swapping. The pixel just to

the right of the center is exchanged with the one to the left. Eventually the rightmost

pixel in the image is exchanged with the leftmost. Everything gets swapped back into

its original place.

The function, as written, keeps going and undoes the desired swap that it has done

to begin with. If you recall, this is the same sort of action taken by the iterative pal-

indrome checker that you wrote in 8.10, Verifying Palindromes with Iteration and

Recursion. In palindrome checking, it just ended up verifying the same thing twice

or detecting the same mismatch twice, so while it was redundant, it didn’t cause the

function to work improperly. In flipping an image, going past the midpoint undoes the

work that was properly done in the first half of the process.

So, what’s needed isn’t additional work, but less work. Instead of iterating over

range(width), how about iterating over half of that interval?

Give it a try and confirm that you have a working horizontal flip algorithm.

If you find that you have an error, you might be determining something like 200.0,

or even 122.5, as the midpoint of your image. You can use // (integer division) or you

can cast the result of the division so that it becomes an integer, using int().

To conclude, I’ll mention that Python has a handy built-in way to swap values using

multivariable assignment. The following line of code will exchange the values in the

variables a and b:

a, b = b, a

192	 Chapter 10

Given that it’s this easy to do a swap, why did I annoy you with the “manual”

method of swapping values? When you use this multivariable assignment, Python

undertakes the same sort of exchange that we’ve done internally. This syntax is a

convenience—one that you are welcome to use, but not one that all programming

languages provide. While I don’t consider that every inner working of the computer is

important for an exploratory programmer, understanding the straightforward way to

exchange values is a simple and important concept in programming and was worth

introducing.

[Exercise 10-2]  Flipping along the Other Axis

Now, to be sure that you understand how this works, write your own flop() function,

which flips the image vertically.

[Free Project 10-1]  Cell-by-Cell Generators

Do this project two (2) times, once starting with a text grid and once starting with a

generated image. Choose to do either a visual text generator (which will create a grid

of characters) or a standard image generator. Your program should iterate through the

text grid character by character or iterate through the image pixel by pixel. It should

produce some grid of characters or some image, using any method you like. To begin,

you could make every character the same or every pixel the same. After you start by

doing this, you should elaborate your generator somehow. You can use randomness,

interesting mathematical functions, or anything else. But essentially, go through and

generate each character or each pixel. If your grid is going to be made out of text, you

won’t use PIL.

After completing a generator, adapt it such that if you made a text grid generator,

you convert it to an image generator—or vice versa. Of course, you’ll have to deal with

some differences between a grid of characters and an image. The former doesn’t have

color, whereas the pixels of the latter don’t have different shapes, the way that charac-

ters do. Nevertheless, see what you can accomplish by trying out this conversion.

[10.10]  Essential Concepts

[Concept 10-1]  Modules Can Be Used in Python

There isn’t much difference between using a library or module, such as PIL, and using

the built-in, standard facilities of Python. You should be aware of how to use import

to provide access to the facilities of such add-on libraries, just as import is necessary to

access some of standard Python (random, re). The way to create and use objects (such

Image I	 193

as Image objects) can be slightly different, too, and it’s important to figure out how

this works.

[Concept 10-2]  You Can Ask Python Itself for Help

Using help() allows you to read Python’s built-in documentation for different func-

tions and methods. To see what all the available methods and attributes of a particular

object are, use dir().

[Concept 10-3]  Images Are Rectangles of Pixels

An image, as typically represented in a computer, is a rectangle of pixels, each one of

which, these days, has (at least) red, green, and blue values associated with it. The size

of the image and the color value of each pixel is represented as a tuple, a data type that

you should understand, and the overall model of an image should be clear to you at

this point.

[Concept 10-4]  Nested Iteration Goes through Every Pixel

When it’s necessary to cover every element (every pixel) in a picture plane, one dimen-

sion of iteration isn’t enough. What works for a list or string isn’t going to cover a two-

dimensional region. In this case, nested iteration (increasing the variable x a step at a

time while going through all values of y) is a very useful approach. Understand how to

iterate in two dimensions, as is necessary for analytical, transformative, and in many

cases generative work with images.

[Concept 10-5]  Values Can Be Swapped between Variables

You should understand how (using a computer program) you can exchange the val-

ues of two variables and should see how this applies in the case of flipping an image.

Understand how to do this in Python using multivariable assignment, but also how to

do it “manually” using the classic swapping pattern.

[11]  Image II: Pixels and Neighbors

[11.1]

We’ll continue investigating image manipulations in this chapter. Having looked at

the cases where each pixel is independent, and where the pixel on the opposite side

is important, we’ll next consider a type of image processing in which the local area

around each pixel is important.

[11.2]  Blurring an Image

Consider what “blurring an image” means at the pixel level. If an image is sharp, its

pixels are distinct from nearby pixels. Not everywhere, of course, but along lines that

distinguish different regions in the image. If an image is blurry, that means that nearby

pixels are similar in value—more similar than they would be in a sharp image, even if

they are along such dividing lines.

So, one idea—and one that will serve very well—is that a blur() function should

make neighboring pixels more similar.

Of course, it’s possible to blur an image more or less, and it’s even possible to blur it in

different ways—but for now, let’s see if we can do it at all. Performing a blur of any sort

allows us to do another fundamental image processing operation and to understand

what is behind this operation.

So, consider: If you take some more or less random pixel—say, from the center of an

image—how would you make it more like its neighboring pixels?

You could check out the pixel above it, the pixel to the right, the pixel below it, the

pixel to the left—and why not the diagonal pixels, too, which seem to be neighbors,

even if they just touch the pixel at a corner. If the color values of these were, on aver-

age, darker than the current pixel, it would make sense to shift the current pixel to a

darker color. If they were lighter, it would make sense to make the current pixel lighter.

196	 Chapter 11

So for each pixel, we’re interested in the average brightness/darkness of the eight

surrounding pixels. Each pixel has three color values, and there are eight of them; that’s

twenty-four values to add up. We could just write out an expression that adds up all

twenty-four of these terms.

But such an expression, with so many terms, would seem to invite mistakes. So

instead, let’s use at least one type of iteration. We could iterate over the eight neighbor-

ing pixels or over the three color values. Clearly, the former type of iteration would

result in more compact code. But consider what the coordinates are of the neighboring

pixels of pixel (x, y). Starting in the upper left and going right, they would be (x−1,

y−1), (x, y−1), (x+1, y−1), (x−1, y), and so on. Of course, they aren’t all in a line, and so

there isn’t the most obvious structure to this list of eight points. So it might be easier

to iterate through the three color values, which are just r, g, and b in the tuple (r, g, b).

Specifically, if this tuple were assigned to the variable color, they are color[0], color[1],

and color[2]. Those should be very easy to iterate through.

So having decided which way to iterate, let’s consider what it takes to sum up a

single color value, the red value (number 0), from all neighboring pixels. Then, we can

generalize this to add up all three color values and average them all. To make this a bit

more compact, but still fairly clear, let’s call the image we’re working with (previously

known as ourimage) by the three-letter name pic. Assign an image to this variable

using the PNG file you found online in the previous chapter. If you’re opening up a

new Jupyter Notebook, be sure to begin with from PIL import Image so that you’ll

have access to the Image object within PIL.

Summing the eight red color values can be done with the following expression with

eight terms:

around = (pic.getpixel((x - 1, y - 1))[0] +

 pic.getpixel((x, y - 1))[0]+

 pic.getpixel((x + 1, y - 1))[0] +

 pic.getpixel((x - 1, y))[0] +

 pic.getpixel((x + 1, y))[0] +

 pic.getpixel((x - 1, y + 1))[0]+

 pic.getpixel((x, y + 1))[0]+

 pic.getpixel((x + 1, y + 1))[0])

I surrounded these eight terms with parenthesis so the whole long expression can

be broken across several displayed lines. In Python, it’s okay to take a parenthesized

Image II	 197

arithmetic expression or a list or a tuple and extend it over several lines. You could actu-

ally also put all of this expression into a single line; it would work just fine. However,

it would be much harder to read, check, and edit in that case.

This is a pretty formidable expression. It’s a good thing we won’t need to write one

three times as long. Check through the eight coordinates to make sure you have typed

in all of them correctly. They are all the combinations of x - 1, x, and x + 1 in the first

place and y - 1, y, and y + 1 in the second place—except for (x, y), because we’re

only interested in the pixel’s neighbors, not the pixel itself.

If we want to know the average red value, we can simply divide the value in around

by 8 by adding this to the end:

around = around / 8

We haven’t bundled this code into a function yet, but we can still test it out. Find

a point in the interior of your image that is fairly dark. You can use an image editor to

find the coordinates of a precise point on the image, or if you have an image that has a

large dark region in the center or in one corner, you can figure out some point that will

be in this region. For me, I set x and y as follows:

x, y = (127, 400)

Then, I pasted in and executed the long assignment beginning with around = pic.
getpixel(and I also executed around = around / 8. That left me with an around

value of 40.75, which is fairly close to black. I then located a region that looked white

and found the coordinates of a pixel in that region. Again, you can use an image editor

to find a precise location, or you can take a guess and check the color value of the pixel

you picked. For instance, if you want to see the color values of the pixel at (200, 170),

you can call pic.getpixel((200, 170)) and see what results. I did, and it was a good

pixel to pick, so I set the values of x and y accordingly:

pic.getpixel((200, 170))↵

x = 200

y = 170↵

Again, I ran the expression beginning with around = pic.getpixel(, and I also ran

around = around / 8. This time, around had the value 255.0, which means that all

eight of the nearby pixels had the maximum red value, which they would if they were

completely white.

This type of testing doesn’t guarantee that our expression is the correct one; we

could have included one coordinate twice, for instance. But it is useful to see that no

198	 Chapter 11

error message is produced. Or, if one is, it’s useful to fix the expression at this stage,

before even more complexity is added.

Next, let’s elaborate the expression to go through color[1] and color[2] in addi-

tion to the red component:

around = 0

for c in [0, 1, 2]:

 around = (around +

 pic.getpixel((x - 1, y - 1))[c] +

 pic.getpixel((x, y - 1))[c] +

 pic.getpixel((x + 1, y - 1))[c] +

 pic.getpixel((x - 1, y))[c] +

 pic.getpixel((x + 1, y))[c] +

 pic.getpixel((x - 1, y + 1))[c] +

 pic.getpixel((x, y + 1))[c] +

 pic.getpixel((x + 1, y + 1))[c])

We now need to accumulate the values for each color component in around. So we

start by setting around to 0 and then go on to add each of the eight color values to it

each time.

We also need to iterate through the three colors. We can do that without trouble

by just iterating through [0, 1, 2]. We could have written range(3) instead, but it

wouldn’t really have been clearer and it wouldn’t have saved much space, either.

With those changes made, there is only one more needed. Where we looked for ele-

ment number 0 with [0] in the expression, we now look for element number c with [c].

The final change is that our last line, dividing around by 8, should be modified to

divide by 24:

around = around / 24

We haven’t done any blurring yet; we’ve just checked to see how light or dark neigh-

boring pixels are. Still, let’s bundle up what we have in a function so we can use it later.

Now that we are making a general function, instead of doing a specific operation on

our particular image called pic, I am going to use a new name for the image, which is

an argument to the function. Instead of pic (one particular image), I will let this gen-

eral argument be named img:

Image II	 199

def nearby(img, point):

 (x, y) = point

 around = 0

 for c in [0, 1, 2]:

 around = (around +

 img.getpixel((x - 1, y - 1))[c] +

 img.getpixel((x, y - 1))[c] +

 img.getpixel((x + 1, y - 1))[c] +

 img.getpixel((x - 1, y))[c] +

 img.getpixel((x + 1, y))[c] +

 img.getpixel((x - 1, y + 1))[c] +

 img.getpixel((x, y + 1))[c] +

 img.getpixel((x + 1, y + 1))[c])

 return around / 24↵

nearby() takes two arguments. The first is the image it will examine. The second is a

tuple (specifically, a pair) with the horizontal and vertical coordinates of a particular

point in that image, a particular pixel.

Try it out by loading up a new image using the Image.open() method. Then assign

that to the variable ourimage, and check a few points inside that image—for example:

nearby(ourimage, (42, 40))↵

One last modification to this code, which we’ll rename as differ(). Let’s have our

function determine not only the average nearby color values, but also the difference

between that average value and the current pixel’s value. We can do this by also adding

up the color values of the current pixel and using them at the end. If the surrounding

area is darker (closer to 0), we should find that this function returns a negative number.

If it is brighter (closer to 255), the function should return a positive number.

def differ(img, point):

 current = 0

 around = 0

 (x, y) = point

 for c in [0, 1, 2]:

200	 Chapter 11

 current = current + img.getpixel((x, y))[c]

 around = (around +

 img.getpixel((x - 1, y - 1))[c] +

 img.getpixel((x, y - 1))[c] +

 img.getpixel((x + 1, y - 1))[c] +

 img.getpixel((x - 1, y))[c] +

 img.getpixel((x + 1, y))[c] +

 img.getpixel((x - 1, y + 1))[c] +

 img.getpixel((x, y + 1))[c] +

 img.getpixel((x + 1, y + 1))[c])

 return (around / 24) - (current / 3)↵

Make sure you understand what this elaboration is and why it was done. We could

have obtained the proper value for current differently. It would have been possible to

simply add up the color values in the current pixel with an expression of only three

terms. But because we are already iterating over the three colors, I wrote the preceding

code, which accumulates the color values in current using that preexisting loop. I

don’t know that it’s more concise or even that it’s the best possible option, but it is at

least consistent with the way the value of around is being determined.

Try out differ() to see if it provides reasonable results. You may not be able to

locate “sharp” areas of an image to target, but you can at least make sure that you are

getting reasonable results—never less than -255 or more than 255, for instance.

Now we’re finally ready to blur images. We need a function blur() that uses the

framework we developed earlier to visit every pixel in an image. For every pixel, call

differ() and get a number showing how much this pixel varies from the surround-

ing ones. In continuous, similar-looking regions, this should be near zero. In “sharp”

regions, it will have a larger magnitude, and may be negative (if the pixel is lighter than

average) or positive (if darker). To blur the image a bit, we can shift each color by half

of what differ() returns.

One more thing that’s important to note at this point. When we were going around

and changing individual pixels based only on those individual pixels—as when we

were increasing the contrast, for instance—it was no problem to modify the image as

we read it. But now that our new pixel depends on other pixels around it, we’d better

create a new image and return that one. If we try to modify the image in place, our

Image II	 201

changes will start influencing future changes that we’ll make, and we won’t get the

right results.

In fact, this modification-in-place problem was what we already experienced with

flip(). In that case, the problem was solved by just making a copy of one pixel as we

proceeded down the image. But we can’t get away with that in blur().

So, we’ll create a new image of the same size as ourimage by calling Image.
new('RGBA', img.size). Call it newimage. You may notice that we’re not specifying

the color. It’s optional and is set to (completely transparent) black if we don’t specify a

value. Because we will visit every pixel and set the color for each one, there’s no need

to set the color to anything in particular initially.

So, here’s the first thing to try:

def blur(img):

 blurred = Image.new('RGBA', img.size)

 for x in range(img.size[0]):

 for y in range(img.size[1]):

 (r, g, b, a) = img.getpixel((x, y))

 change = differ(img, (x, y)) / 2

 blurred.putpixel((x, y), (r + change, g + change, b + change, a))

 return blurred↵

This code iterates along the width and within that the height of the image, and for each

pixel it obtains the color values. It determines half the difference from the neighbors,

and then sets the pixel’s red, green, and blue values appropriately. The original alpha

value of each pixel is preserved.

However, it has some problems. You’ll see the first of them when you run this code—

for instance, on ourimage—and witness TypeError: integer argument expected,
got float, with an indication that the problem is in putpixel(). The color values

being put into each pixel of the image have to be integer values. One easy way to fix

this is to explicitly cast change so that it becomes an integer. To be sure you understand

how this process of casting, this conversion from one type to another, is done, try out

the following:

int(500.2)↵

ratio = 120.7

int(ratio)↵

202	 Chapter 11

The use of int() truncates the digits after the decimal point while it changes the type of

the data from floating point to integer.

Let’s do something slightly different and round to the nearest integer, using another

built-in function, round():

round(ratio)↵

That changes the type as well. Check by trying out type(round(ratio)).

So, replace differ(img, (x, y)) / 2 with round(differ(img, (x, y)) / 2) on

the sixth line of blur(). This way, each of the integer color values r, g, and b will have

an integer added to them, and the result will be an integer. The alpha value will remain

as it originally was.

After fixing this, the next error you should see is IndexError: image index out of
range. The error message also shows that the problem occurs within differ(), on the

sixth line of blur() and the fourteenth line of differ(). Let’s start at the very first step

this function will take to try to determine what is causing this error.

At the first step of iteration, x is 0 and y is 0, corresponding to the point in the image

that is in the upper left. Getting the color values of pixel (0, 0) shouldn’t be a problem.

Indeed, the error is not happening there. In the next line, where the value of change is

determined, there is a call to differ(). This function iterates through color 0, 1, and 2

and for each one adds up the color values of the neighboring pixels. So specifically, in

this first step, it will first add up the color 0 (red) values for the neighboring pixels of

(0, 0): that is, pixel (-1, -1), (-1, 0), (-1, 1), (0, -1), and so on.

This seems a little confusing. What could pixel (-1, -1) mean? As it happens, now (in

the current version of Python and PIL) this coordinate indicates the pixel in the lower-

right corner. That is, for an image 200 pixels wide and 100 pixels high, the upper-left

pixel is (0, 0), and (-1, -1) is the same as pixel (199, 99). This is consistent with the

way you can use -1 in indexing and slicing strings to refer to the last character of the

string, as described in 8.10, Verifying Palindromes with Iteration and Recursion. So the

beginning of the process, at the start of this first row, isn’t causing a problem. But what

happens when we get to the end of the row? Let’s be concrete and consider what hap-

pens for an image 200 pixels wide and 100 pixels high. At the last step of the first row,

we’ll be checking (-1, 198), (-1, 199), (-1, 200)—and there is our problem. Even though

Python and PIL have been updated (since the first edition of this book) so that (-1, -1)

now refers to a pixel, (-1, 200) isn’t going to refer to anything. We can only go up to

199. Hence the error that told us index out of range. This should be familiar! It’s the

same sort of problem we encountered in 8.4, Counting Double Letters.

A fix (good enough for this exercise) is easy to apply. Instead of beginning our hori-

zontal iteration at 0 and going to width - 1, we should only go up to width - 2. For

Image II	 203

consistency’s sake, let’s also start at 1 so that we don’t begin or end on the edge of the

image. And we should do similarly for our vertical iteration. In other words, we will

only attempt to change the interior points. We’ll just leave the outer-border pixels as

they originally were.

def blur(img):

 blurred = Image.new('RGBA', img.size)

 for x in range(1, img.size[0] - 1):

 for y in range(1, img.size[1] - 1):

 (r, g, b, a) = img.getpixel((x, y))

 change = round(differ(img, (x, y)) / 2)

 blurred.putpixel((x, y), (r + change, g + change, b + change), a)

 return blurred↵

[Figure 11-1]
Interior pixels have eight neighbors, the way we’ve defined neighbors—including those pixels on

the diagonal. But pixels on the edges and in the corners don’t, so code that tries to refer to all eight

of these neighbors won’t work.

204	 Chapter 11

At this point, we have developed a correct function to blur an image in one particu-

lar way. This function doesn’t look very far away from each pixel it is adjusting when

it blurs the image; it looks only one pixel away from each pixel. But it does manage

to blur the image at this low level. If you can’t see the blurring that has happened on

the image you chose, construct an image that has a single, one-pixel line. (Any image-

editing program—even a paint-style program—will allow you to create such an image.)

Blur that image, and then take a look at it, zooming in to see what has happened. You’ll

notice that the blur() function does indeed blur the image, although only in a very

contained way.

To make the effects of blurring more visible, you can apply your blur() function

multiple times, taking the image you have in memory (let’s say it’s stored in the pic-
ture variable) and trying out something like blurry = blur(blur(picture)), then

inspecting the result.

You can imagine, I’m sure, how to blur an image like this with a wider window for

each pixel. Instead of looking only at the eight neighboring pixels, you could look at

the sixteen pixels around those.

As with flipping an image, this function performs the work of blurring an image

just as Photoshop, the Glimpse editor, and other programs do. Image-manipulation

programs are more general, but the underlying principle is the same one seen here. In

fact, blur() is a specific case of a more general technique in image manipulation—the

use of filters.

Blurring an image in this way is a typical exercise in an introduction to program-

ming. You can imagine that the problem could be solved by a beginning programmer

who has developed some intuitions, understands how iteration works, and can easily

deal with arithmetic. In this section of the book, I’ve tried to explain how the step-by-

step development process might proceed and what difficulties might crop up. These

are very typical difficulties for this type of assignment, and it would be valuable to

encounter them and overcome them on your own.

Independent learners don’t have the benefit of working through a problem like this

one and overcoming every difficulty, however. Even classroom learners who collabo-

rate with other students don’t always complete such problems with good understand-

ing. In an ideal world, they would work together and discuss each problem posed,

collaborating through a process like this one.

I hope that you will encounter several interesting and instructive difficulties, and

overcome them, in this book’s free projects. In this section, I have modeled a program-

ming process, complete with particular ways a programmer might encounter errors

and (with the help of error messages) figure out how to fix the code. In typing in these

Image II	 205

snippets of code, you of course have the opportunity to unwittingly introduce errors

that you will also have to address, so there will be some opportunity to go over the code

closely and deal with difficulties that I haven’t documented.

[11.3]  Visiting Every Pixel

I mentioned previously that to accomplish global image manipulations, our program

needs to visit every pixel of an image, at least to read the color values of each pixel. At

this stage, I will acknowledge that this statement, while it provides reasonably high-

level guidance, is not completely correct. Of all the image manipulations we consid-

ered, there is one type that does not always require that the program visit every pixel

of the image. Although this is a fine point, it presents a good opportunity to test and

improve your thinking about programs and how they work.

Which of the image manipulations we covered does not, in absolutely every case,

require that every pixel be visited? In what cases must every pixel be read and/or writ-

ten, and in what case can some pixels be ignored?

If you can answer these questions now, go ahead and do so. If not, read on for an

example of how to prove that, for a particular image manipulation, the program must

visit every pixel.

Consider the manipulation called de-red, which is sort of an extreme version of the

cooling manipulation. This sets the red color value of every pixel to 0. In this case, there

are two ways that the program might operate.

The program could read the value of every pixel. If the red value is already 0, no

action is required for that pixel. Otherwise, it must set the pixel with 0 as the red value.

In this case, even if some of the pixels have no red to begin with, every pixel still must

be visited in order to read it and determine this.

Or, if there is a way to set the red, green, and blue color values independently, the

program could simply set the red value of every pixel to 0 without even bothering to

read it. But in this case, every pixel must be visited in order to write each one of them.

There is an even simpler way of putting it that doesn’t get into the details of read-

ing and writing: If the program doesn’t visit some pixel, that pixel might need to be

manipulated to remove the red, and if it does need to be changed, the program will not

be able to complete the de-red operation. So it must visit every one. There is simply no

shortcut that can be guaranteed to work with all images.

Apply this reasoning carefully to the image manipulations we implemented. In

what specific case, for what manipulation, does this argument not hold? It shouldn’t

be obvious, but go through each of the manipulations we’ve done. Is there one that

206	 Chapter 11

might succeed without reading or writing certain pixels? Because we know, by virtue of

how the image manipulation is defined, that some pixels are correct as is?

Here’s a hint: Consider the case where an image’s height or width is odd.

[11.4]  Inverting Images

Let’s develop a new transformation, although a very simple one. We’re going to invert

the image, developing a function invert(). White will become black and black white.

If a particular pixel has the maximum red value (255) and no green or blue (0 in both

cases), we’ll change that so that the new pixel has no red (0) and has the maximum

green and blue (255 in both cases). If we have a pixel that is very dark gray—for instance,

(20, 20, 20)—it will become very light gray: (235, 235, 235).

First, let’s figure out how to iterate through the image. When we wrote blur(), it

was necessary to look at the surrounding pixels each time we wanted to adjust a pixel.

We also made a copy of the image so that our transformation didn’t influence itself

along the way. Is that necessary for invert()? Is the way we change a pixel defined in

terms of its neighbors or in terms of the pixel itself?

Having determined that, select a framework. If we are going to change the image

a pixel at a time based only on the previous value of the pixel, you can start with

modify() and rename it invert(). If we need to check the nearby pixels to determine

their values, it would be better to start with blur() and differ() and modify those.

As we iterate through the pixels, we need to check the current color values of each

one. The getpixel((x, y)) method, a method of the Image object, allows us to do

this. Its output can be assigned to the same sort of triple we’ve been using in previous

problems.

Finally, we need to write a new pixel with new color values. The putpixel((x,
y), (r, g, b)) method, also a method of the Image object, allows us to do this. But

instead of writing the values (r, g, b), we want to write the opposite of r, the oppo-

site of g, and the opposite of b. If one of these values is 0, we would like 255. If one of

them is 20, 235. If one of them is 127, 128. And so on. What expression can be used

instead of r to produce this result? It’s a short expression indeed, one that has only two

terms. Once you determine what it is, you should write similar expressions for g and b.

Hopefully that was neither too plodding nor too cryptic. At this point in this chap-

ter, you should be able to write the invert() function. Give it a try, and if entering it

or testing it out produces errors, work to correct them.

If you don’t understand how to write code to invert an image, you should identify

what question or questions you have. You should understand the following:

Image II	 207

•	 How to do two-dimensional iteration through an image

•	 Whether you need to check the neighboring pixels or simply consult each pixel

individually

•	 Whether you need to make a copy of an image or can simply write the new color

values in place to each pixel along the way

•	 How to get a pixel’s color values and store them in three variables

•	 How to write new color values to a pixel

•	 How to invert a color value so that, for instance, 0 becomes 255

In all but the last case, if you have a question, you should review the discussion earlier

in the chapter, entering and modifying code, to better understand these topics.

In the last case, keep trying out different expressions, using the Python interpreter

as a calculator.

Finally, when you have written invert() successfully, look over that list to see some

of the specifics you have learned about. To those, I’ll add that we also have discussed,

and a reader/programmer at this point should be conversant with:

•	 How bitmapped images are represented at a low level and why their color values

range from 0 to 255

•	 How to load images from and store images to the file system from within Python,

where they can be manipulated via the Image object

•	 How the contrast of an image can be increased

•	 How a particular filter (of the sort used in Photoshop and the Glimpse editor) actu-

ally works at a low level

•	 How to convert between types (floating point and integer) and why one would need

to convert

•	 How saturation arithmetic works, and how it makes setting the color values of pixels

easier

You should really feel ready, at this point, to jump in immediately and start writing

code that modifies images and analyzes them. You might want more practice with

image manipulations and with reading images, of course, and you might want to learn

some higher-level and more practical techniques for working with images. The work

done in this chapter is the basis for such further exploration.

[Exercise 11-1]  Old-School Filter

Here’s another type of image manipulation to try. Convert ordinary pictures to make

them look (sort of) as if they are being shown on an old monochrome, green-on-black

208	 Chapter 11

monitor. To start with, you need only change the color; this manipulation doesn’t have

to add scan lines, phosphor patterns, or blur—although of course the blur manipula-

tion could be used to do the last of these.

[11.5]  Practical Python and ImageMagick Manipulations

There is a simpler way to invert an image using PIL. After importing the Image object, if

it hasn’t been done already, and also importing another object as shown on the second

line ahead, an image can be inverted with a single command. Let’s look at the whole

process of doing the needed imports (as if in a fresh Jupyter Notebook), loading a PNG

image from a file, converting that image to RGB mode (the conversion will just do

nothing if it is in RGB mode to begin with), inverting the image, saving the inverted

image, and then displaying it in the notebook:

from PIL import Image

import PIL.ImageOps

ourimage = Image.open('source.png')

rgbimage = ourimage.convert('RGB')

inverted = PIL.ImageOps.invert(rgbimage)

inverted.save('inverted.png')

inverted↵

For well-known transformations (such as flipping, blurring, and inverting), it is best to

use built-in methods such as these. When they are part of a reliable package such as

PIL, they will tend to be well-written and well-tested. We didn’t care about how fast our

code was, and for custom research purposes, optimizing for speed often doesn’t make

sense. But when one is doing a large number of image manipulations, particularly in

an automated and regularly repeating way, it can be a big help to use code that is so

optimized.

There are several standard image manipulations you would want to use in proc-

essing a batch of images for the Web or for another project. Although it’s nice to learn

how these are done at a low level, and in some cases one may wish to program new

image manipulations, a great deal of common image manipulation work can be done

with existing programs and without using Python and PIL. Photoshop and the Glimpse

editor are set up to manipulate individual images, but there are always ways to go

through large numbers of images and process each of them in the same way. A great

way to do this is using ImageMagick, which is free software and works across platforms.

Image II	 209

ImageMagick can be used to convert between image formats in addition to manipulat-

ing the pixels of images.

ImageMagick is also frequently used as a command-line program, and the ability

to work in the shell (which you are developing or at least practicing in this book) will

help you to use ImageMagick. This isn’t the place for a complete tutorial, but here is an

example of how it works:

$ convert -negate *.png inverted.png

For each PNG image in the current directory, this creates a file (named inverted-0.png,

inverted-1.png, etc.) that contains the inverted (or negated) image.

Using wildcards such as *, the command line provides simple ways to refer to large

numbers of files at once. The command-line arguments to ImageMagick must be

learned, or the documentation must be consulted to determine how to compose them,

but they provide a concise way to specify the operations that are to be done and the

order in which they should take place. This is not to say that ImageMagick is better

overall than a GUI application, simply that it has advantages when there is a batch of

images to process; it is good at generalizing across images. For making manual pixel-by-

pixel changes, these graphical applications are almost certainly better. But for applying

a few standard manipulations, and possibly a format conversion, to a large number of

images, ImageMagick works well. Just as textually writing programs provides for a good

way to generalize over numerous images, the ability to type command-line arguments

also helps people as they specify what ImageMagick is to do to large numbers of files.

Finally, because one can invoke ImageMagick from shell scripts and programs, it

is possible to automate its workings and integrate it into a larger systems, such as a

website. The textual interface, which users of the program can access directly by typing

on the command line, also serves as an application programming interface (API) and

allows programs to run ImageMagick.

Of course, there is a major limitation to only knowing how to use ImageMagick,

powerful as it may be. If you devise some sort of transformation or method of analysis

that is not supported by this package, you’ll either need to code it from scratch or forget

about it. As your transformations become more nonstandard, more unusual, you may

also find that they are possible to do with ImageMagick but are easier to do in Python.

[11.6]  Manipulating Many Images

Going through every pixel of an image, for every pixel in a row and for every row in

the image, is a type of abstraction and generalization. What can be done for one pixel

can be done for every pixel in an image. In this section, we’ll generalize our image

210	 Chapter 11

manipulations further and show that what can be done for a single image can be done

for any number of images.

The practical uses of such manipulations include preparing a body of images for a

digital media art project or for a website, in ways that are more complex or specialized

than can easily be done with ImageMagick.

We’ve seen how the command-line program ImageMagick can work on every PNG

image in a directory when given the argument *.png. Wouldn’t it be great to have

our Python image manipulations work on every file in a directory as well? This would

allow us to generalize an operation we can do to one image and have it apply to many

of them.

Let’s use the old-school filter you wrote in the previous exercise. If you haven’t

developed the filter in this way already, modify it so that it is named old_skool() and

accepts an Image object (not a filename) as an argument. I’m assuming that your func-

tion modifies the image it is given “in place” and does not need to return a new image.

If you do return a new image, you’ll have to change the example code ahead.

We’ll write a loop that wraps around the call to old_skool() and for every file in

the directory opens it, processes it, and writes the modified file. In the middle of our

loop, we’ll have:

modified = old_skool(current)

In that line, the filter will be applied to the current image and will result in the pro-

cessed image, stored in a new variable. But with just that line, we won’t have the image

in memory yet, and when we’re done we won’t have saved it. We also need a line for

each of those. Let’s first write our program to process a single file, example.png, and

then go back and write code to generalize this program:

current = Image.open('example.png')

modified = old_skool(current)

modified.save('example.png')

Wait before pressing Shift-Enter. There’s something we want to edit here. This code

will wipe out the original example.png and replace that file with the modified image.

If that’s what you really want to do at some point, okay, but often you don’t want to

overwrite your original file. And when you’re still making sure your program works

properly, it’s a particularly bad idea! Let’s make a minor change, just to line three, so we

save a file with a different name and don’t overwrite the original image:

modified.save('oldskool_example.png')

Image II	 211

This isn’t perfectly safe! If you have a file named oldskool_example.png already in the

directory, that will get overwritten. But let’s make this improvement, for now, and go

on. Try these three lines with the appropriate PNG file in the directory and see that the

transformation works for example.png.

Now let’s figure out how to do this for every PNG in the current directory. To start,

we can get a list of what files ending in “.png” are in that directory. There are a few

ways to do this, but it’s easy to use the glob module:

import glob

glob.glob('*.png')↵

That provides a list of all files in the current directory with the appropriate file exten-

sion, using a syntax that is very much like our command-line example. It’s a list like

any other list, so we can iterate through it and work on each filename:

import glob

file_list = glob.glob('*.png')

for filename in file_list:

 source = Image.open(filename)

 modified = old_skool(source)

 modified.save('oldskool_' + filename)

That’s all there is to this type of generalization—taking some computation that we’re

performing on a file and performing it on many files. Notice that if you have n different

PNG files in your directory, this always places n new files, with modified images, in that

same directory—even if some of the original filenames already begin with oldskool_!

In that cacse, you’ll get a filename beginning with oldskool_oldskool_.

Of course, glob can be used to work with directories and files in more powerful

ways, and there are also some limitations to this approach. If we have a file in our direc-

tory that ends in “.png” but isn’t actually a PNG image, that’s almost certainly going

to crash the program we wrote. We could revise the program to account for that and to

produce an error and continue in this case. But this is a pretty good starting point for

multifile image manipulation.

[Free Project 11-1]  Image Manipulation as You Like It

Do this project at least two (2) times. Select an image transformation that is available

in some existing software, one that you are curious about. You may choose Photoshop,

212	 Chapter 11

Glimpse, a bitmapped image editor in the style of Microsoft Paint, or even ImageMagick.

Implement this transformation in the same way we implemented flip(), blur(),

invert(), and other manipulations. You may find, after trying for a while to imple-

ment your selected transformation, that it is proving too challenging. In that case, just

choose another one that seems more suitable. The time you spend working on a trans-

formation that turns out to be complex isn’t wasted; it’s part of learning about what

computational work is more straightforward and what work is harder to implement.

[11.7]  Essential Concepts

[Concept 11-1]  Checking the Neighborhood

By developing a function to blur an image, you explored how the new value of a pixel

can depend on nearby pixels. Computation that looks to the local area is applicable to

analysis as well as transformation and applies to other media. Understand the basics of

checking nearby values.

[Concept 11-2]  Working One Step at a Time

After you have an immediate goal and know the approach you want to take a program-

mer, develop the first step of this approach and test it out as best as you can. Address

the first error you encounter, then the next.

[Concept 11-3]  Generalizing to Many Files

What can be done with a single file can be done to a large number of files, whether

it’s image manipulation, the processing of text documents, or any other sort of data.

Understand how to expand a program written to work on one file to work with (at

least) every applicable file in a directory.

[Concept 11-4]  Customizing beyond What’s Standard

With image manipulation and many other aspects of programming, any capable pro-

gramming language will offer the ability, either built-in or using libraries such as PIL, to

do a variety of standard types of operations. You should use these when you want to do

any standard type of operation because they will be optimized and well-tested. When

you want to do something that isn’t standard, however, you’ll benefit from knowing

how computer programs work with images and other media at a low level. Being able

to program more generally, whether for image manipulation and analysis or for other

purposes, will allow you to pursue explorations off the beaten path.

[12]  Statistics, Probability, and Visualization

[12.1]

In this chapter, three important and related ways to understand data will be introduced

both through practical experience with programming and through theoretical discus-

sion. The first of these approaches is statistics, a systematic, mathematically principled

methodology for analyzing quantitative data, which relates directly to the second

approach, probability, which offers a perspective on the underlying processes by which

such data may be generated. The other way to understand data is through visualiza-

tion, a designed way of visually representing quantitative data to allow better explora-

tion and understanding. Measures that are derived from data, such as averages—and,

more specifically, the mean we implemented in 6.4, Iteration (Looping) Abstracts

along Sequences—are also themselves called statistics. There are plenty of relationships

among statistics, probability, and visualization: all are means of providing new per-

spectives on data, for instance. Something discerned in a visualization will often lead a

researcher to do further statistical analysis.

There are various reasons to do statistical, probability, and visualization work. A

researcher might have a rhetorical purpose and be trying to persuade others by show-

ing statistics and visual representations that support one’s point. This mode is different

from that of the explorer who is trying to identify unexpected trends and correlations

in the data. The presenter has a conclusion and is looking for ways to support it, while

the explorer has data and is trying to figure out what can be concluded. I’m glad to

have learned about this from one of my advisees, Michael Danziger, whose master’s

thesis explores this distinction and many other intriguing aspects of visualization as it

exists in culture (Danziger 2008).

By noting that there is a difference between persuasion and exploration, I don’t

mean to say that the presentational or persuasive use of statistics and visualization

214	 Chapter 12

is somehow wrong. In a community of researchers, each individual or team may use

statistics and visualization persuasively when making a case for their findings, and by

contesting and building upon previous results in this way, the community as a whole

could certainly end up advancing toward better understanding. However, because our

theme here is exploratory, the use of statistics and visualization to explore data will be

our focus.

This work in visualization, and the work in animation that occupies the next chap-

ter, can be done in Python but is very well-suited to another mature programming

language, which is also free software: Processing. Rather than learn another optional

Python module, I will introduce Processing in this chapter.

Processing is a streamlined, Java-like language that was developed originally so that

visual artists could learn with the system and use it to sketch. Working in Processing

is different in a few ways from programming in Python, but the fundamentals are

actually the same. Shifting to Processing for a moment provides a way to see how

our experience of programming is not just “learning Python,” but can generalize to

other programming languages. The next chapter, “Classification,” involves working in

Python again. This shouldn’t be a jolt or cause a crisis, however. The same fundamen-

tals of programming apply in both languages.

Processing is not really going to shine in this chapter the way it will in chapter 14,

“Image III: Visual Design and Interactivity.” This chapter will serve to introduce the

language and show how some things we know how to do in Python can be accom-

plished in Processing. After working through this chapter, chapter 13, and chapter 14,

you’ll have a much better idea of how to get more deeply into visualization, along with

more practical means to do so.

Processing also gives us the opportunity to do some programming in a different

environment, a simple and effective IDE—which is not the same as an interpreter or a

text editor, but, like other ways of programming, allows for code editing while provid-

ing other facilities. That means you’ll have experienced programming in the explor-

atory environment of Jupyter Notebook, the plain old text editor, and at least this

one IDE.

[12.2]  The Mean in Processing

Early on in this book, in 6.4, Iteration (Looping) Abstracts along Sequences, we deter-

mined how to find the mean of a list of numbers, using Python:

Statistics, Probability, and Visualization	 215

def mean(sequence):

 sum = 0

 for element in sequence:

 sum = sum + element

 return sum / len(sequence)

We also need to define some sequence of values in Python in order to determine

the mean of that sequence. And we would need to call mean() with this sequence as its

argument to actually compute the mean. So it would take more than these five lines to

do the relevant computing work, although this is the core of it. The rest of the Python

we need might look like this:

values = [10, 9, 73, 25, 33, 76, 52, 1, 35, 86]

print(mean(values))↵

In Jupyter Notebook, as you know by now, the print() function itself isn’t neces-

sary if you want to view the value because the notebook will report on what value is

returned. To type programs into Processing, you open up Processing and type into the

white pane that is below the menu bar and below the tab. Here’s how to do the same

computation of the mean, already accomplished in Python, in Processing:

float mean(float[] sequence) {

 float sum = 0;

 for (int i = 0; i < sequence.length; i = i + 1) {

 sum = sum + sequence[i];

 }

 return sum/sequence.length;

}

float[] values = {10, 9, 73, 25, 33, 76, 52, 1, 35, 86};

void setup() {

 println(mean(values));

}

Open up Processing and type the preceding code into your code window in the Proc-

essing IDE.

216	 Chapter 12

As with Python, the core of the work is done by the function mean(). Beyond that,

you need to list the values (as you would in Python) and invoke the mean() function

(as you would in Python).

Once you type this in and run it (using the triangular button that looks like a “play”

button), you should see that in the console area, the black pane at the bottom, which

is smaller by default, the number 40.0 will appear. That’s the mean of the ten numbers

stored in the variable values, and it’s the same answer you will get if you type in all

of the preceding Python code. As we start working with Processing, I’ll mention the

built-in Processing reference once again, as I did in 1.8, Programming and Exploring

Together. You can get to this resource through the IDE’s menu: Help > Reference. You

can see there’s an option to find terms in the Processing reference, too.

Let’s consider the specific ways in which the Processing code differs from the Python

code, starting with the way the mean() function is defined.

In Python, we begin with def mean(sequence):, but in Processing, we begin with

float mean(float[] sequence) {. This is because the template for defining functions

and methods is different in Processing. It looks like this:

TYPE ____(TYPE1 ____, TYPE2 ____, . . .) {

}

In Processing, it’s necessary for the programmer to declare the type of each variable

and what type of value a function or method will return. Without going any further

into programming language design, I’ll just mention that there is a rationale for this

requirement. In this case, the function is supposed to return a floating-point number

or float, while its one argument is supposed to be an array of floating-point num-

bers, which is indicated with float[]. An array is so similar to a Python list that it’s

not important to explain any more right now. That explains the first line; now on to

the next.

Here we have float sum = 0;, which is different in two ways from the correspond-

ing Python line. First, in this line of Processing code, we explicitly have stated that this

is a floating-point number by starting with float. That’s consistent with the way we

used float and float[] in the previous line. Second, this line ends with a semicolon.

In Processing, as in Java, as in C, as in JavaScript, the end of a logical line of code

must be explicitly indicated with a semicolon. It’s not necessary in Python, and this has

to do with the way Python uses indentation to indicate code blocks. In Processing, you

can indent any way you like—although it’s much clearer to do it in a way that is similar

Statistics, Probability, and Visualization	 217

to Python and is easily understood visually. No matter what, though, each statement

needs to end with a semicolon.

Next, consider:

for (int i = 0; i < sequence.length; i = i + 1) {

This line is also is different in some significant ways from the corresponding Python

line. That’s because the basic template for iteration, like the template for defining

methods and functions, is different in Processing. Here’s what it looks like:

for (INIT; TEST; UPDATE) { ____ }

The INIT or initialization is typically an assignment (in this case, int i = 0) that

sets a counter variable (a variable that will accumulate value) to its initial value. It is run

once at the beginning of the loop’s execution. The TEST is the condition for exiting the

loop. If the TEST is true (in Processing indicated with true and corresponding to the

Python value True) the statements in the body of the for loop, whatever is in the ____,

will be executed. In this case, i < sequence.length checks to see if the counter vari-

able, i, is strictly less than the length of sequence. Finally, the UPDATE is typically used

to change the counter variable, as it is in this case. Here, the update simply increments

the counter variable i.

The way the length of the sequence is obtained here is not by calling a function,

by checking len(sequence), as in Python, but by asking for the length attribute of

sequence, by including sequence.length. That’s just how the length is found in Proc-

essing; there are choices to be made in all programming language design, and in this

case the designers of Processing (following Java) made a different decision than was

made in designing Python.

In the next line, what our program is adding to sum each time is the current element

of sequence. In this loop, however, it isn’t held in the variable element but needs to be

accessed as sequence[i].

This snippet of code then returns the mean. There shouldn’t be many surprises

waiting in this final line. Of course, the way the length of sequence is accessed is differ-

ent from Python and consistent with the attribute access discussed previously. And of

course, the line ends in a semicolon because we’re now using Processing. But otherwise,

it’s the same.

Just two more paragraphs will cover the last two bits of code. float[] values =
{10, 9, 73, 25, 33, 76, 52, 1, 35, 86}; is assigning a sequence (strictly speak-

ing, in Processing, this is an array) of numbers to the variable values. Here we see this

variable labeled with its type (float[]) and we see that the line ends in a semicolon.

218	 Chapter 12

Also, note the way an array literal is specified is with curly braces, { and }. It’s just the

recipe for assigning several values to an array when initializing that array in Processing.

Finally, we have some code to print (display to the screen) the mean of our values.

One aspect of this code that is slightly unusual is that the function we use has a differ-

ent name: println(). The Processing println() function just prints a newline (hence

the ln) after whatever is to be output, however, so it shouldn’t be too startling to see it

used here. More unusual is that this println() is wrapped by something else:

void setup() {

 println(mean(values));

}

void is a special type for functions and methods that don’t return any value at all. The

function setup() is a special one in Processing, called when a program starts. When we

get to more full-blown Processing programs, you’ll see that it can be used to initialize

some of the basic properties of the program, including graphical ones. For now, we’re

just using it to print a single number out to the console area.

This is a somewhat unusual way to introduce Processing because it doesn’t take

advantage of the impressive features of the language and its abilities to create visual

sketches. We will get to those, though. This introduction does provide for a nice com-

parison between Processing and Python. You can see from this that there are some

things to learn in starting to use a new language. But, also, you should be able to see

that starting to program in Processing is not a revolutionary cognitive activity along

the lines of “learning a new (human) language.” It’s just a matter of figuring out some

differences of syntax—needing to declare types, needing to use semicolons, using a dif-

ferent function definition template, using a different template for iteration. Processing,

like Python, has types, so that underlying concept is the same. Processing, like Python,

allows iteration, so that underlying concept is the same. Processing, like Python, allows

the encapsulation of code in functions and methods. The fundamentals do not differ

here, just some surface aspects.

[12.3]  A First Visualization in Processing

Having written a Processing program that has some data packed into it, and that does

the same computation of the mean that we accomplished earlier, let’s now use a lit-

tle bit of Processing’s formidable capability for visual design. We’ll simply elaborate

Statistics, Probability, and Visualization	 219

the program created previously so that it draws a chart of the raw values and the com-

puted mean.

To begin, let’s figure out how we can draw anything at all—and let’s do so by elabo-

rating our existing program. We’ll start by adding a line to the setup() function:

void setup() {

 size(200, 100);

 println(mean(values));

}

Try this version of the program and observe that the size of the output window

(which is still not used for anything, at this point) is specified by the call to size().

Now, we were provided with an output window before we added this line. It was simply

the default size of 100 × 100, which is pretty small. Even 200 × 100 isn’t very big, but

it will suffice for this example.

Next, let’s add another line to show that we can draw a single rectangle using the

rect() function. You have to know what the interface to this function is—what argu-

ments this function takes—to use it, of course. The Processing reference allows you to

easily look up how this function, and any other Processing function, works. Open it

from the menu, Help > Reference, and under the heading “Shape” and subheading “2D

Primitives,” find the entry for rect(). You’ll see that the basic format is rect(x, y, w,
h): x is the x-coordinate of the upper-left corner, y is the y-coordinate of the upper-left

corner, w is the width of the rectangle, and h is the height of the rectangle. So, see what

a rectangle looks like with its upper-left corner at (30, 15) and its size specified as 20

wide and 10 high:

void setup() {

 size(200, 100);

 rect(30, 15, 20, 10);

 println(mean(values));

}

You may notice in the Processing reference that you can provide more than four

arguments to rect(), allowing you to do fancy things like rounded corners. One way

of understanding this is to consider that some arguments are optional, but you can

also think of there being a four-argument function rect(), a five-argument function

rect(), and so on. Processing is designed well so that these different functions work

220	 Chapter 12

consistently with one another. Also, they are set up to allow for abstract thinking and

a focus on the current project. You don’t have to care about these other versions of

rect(); you can use the four-argument version your entire life and be perfectly happy

with just that one, if that’s all that you need.

One thing you will notice is that the display window isn’t set up like quadrant one

of the typical Cartesian plane, the standard coordinate system you will be familiar with

from visits to Mathland. Instead, (0, 0) is the upper left, which is why our rectangle

appears in the upper left and not the lower left. You shouldn’t be too startled to dis-

cover this as the Python Imaging Library works in exactly the same way. It’s standard

in computer graphics.

We’ve drawn one rectangle, but we really want to draw one for each data point, for

each element of values. We can do this using iteration, by placing the call to rect()

in a loop. For each data point, we’ll call rect(). Here’s one (incomplete) bit of code to

do this:

void setup() {

 size(200, 100);

 //rect (30, 15, 20, 10);

 for (int i = 0; i < values.length; i = i + 1) {

 rect(__, __, __, __);

 }

 println(mean(values));

}

In this code, I’ve commented out our test rectangle by putting // at the beginning of

that line. I could have removed this line entirely, but from the computer’s standpoint,

it’s the same to comment the line out. This way, if we did want to display the test rect-

angle at some later point, we could do so by uncommenting the line—removing the //.

It’s possible to clutter things up by commenting out code, but if we just comment out

a line or two it shouldn’t be too much of a problem.

To run this, we need to figure out how to fill in the four blanks. Where should each

rectangle—rectangle number i, corresponding to data point number i—be placed? How

wide and tall should each one be?

To have these rectangles line up left to right, it would be sensible to make each

one 20 pixels wide. We have ten data points and have made the display window 200

pixels wide, after all. If we wanted to make our plotting program general to all sorts of

Statistics, Probability, and Visualization	 221

sequences, we could do a computation to determine the width of the window or the

width of each rectangle based on how many data points we have. But we’re going to

get one specific case working first and then generalize later.

Now one of the four values has been determined: w will be 20. So what about x, y,

and h? Let’s put in some values, even though they won’t be the right ones, to see what

happens:

 rect(0, 0, 20, 20);

This will draw a rectangle each time starting in the upper-left corner, (0, 0). Each of these

rectangles will be 20 pixels wide and 20 tall. Think about what to expect from this code,

and then run the code.

Did you expect to only see one rectangle? Of course, not knowing how rapidly

Processing draws, you might have thought that you’d see a flicker as the rectangle in

the upper left is drawn again and again. Except in some extraordinary circumstance,

however, the drawing is much too rapid to observe. The effect is the same as if you had

just drawn a single rectangle. This is not too exciting, but you can see that Processing

is doing as instructed here.

Let’s make one change, so that the x-coordinate increases as the program iterates

through the data points:

 rect(i, 0, 20, 20);

We’ve simply made the x-coordinate i, so that the first rectangle, number 0, is drawn

at x-coordinate 0; the second, number 1, is drawn at (1, 0); the third is drawn at (2, 0),

and so on.

Is the result consistent with your expectations? If not, can you see why the image

looks like this?

Now it’s possible to see that different rectangles are being drawn, one at each step,

but things certainly don’t look crystal clear. We really want the rectangles spaced out

by 20, not by 1. A simple multiplication can accomplish this:

 rect(i * 20, 0, 20, 20);

That puts the rectangles in the correct place (both horizontally and vertically, the upper-

left points of each are positioned properly) and we already have the proper width set

for each of them. So all that is left is to fix the last argument, the height. This measure-

ment is supposed to correspond to the value of the data point itself. That is, rectangle

i should have a height equal to values[i]. So let’s put that in:

 rect(i * 20, 0, 20, values[i]);

222	 Chapter 12

This is basically correct; there are only two things we should do to have this chart

appear exactly as we had hoped. One thing we should do is add in something that

shows the mean. The other fix, or at least optimization, would be to flip the chart so

that zero is at the bottom and 100 at the top. It’s not wrong as it is, but charts aren’t

usually set up this way, and it is confusing.

Right now, our upper-left point is anchored to the top of the window, while the

height of the rectangle varies according to each data point. We still want the height

of each rectangle to vary in exactly the same way, we still want the rectangles to all

be 20 pixels wide, and we still want the rectangles to be 20 pixels apart. So of the four

parameters of rect(), there is only one that we should change. We want to change the

second argument, currently 0, to something that will place the rectangle with its base

on the bottom of the window (100 pixels down).

Changing the 0 to 100 moves all the rectangles down and out of sight. Try it and see:

 rect(i * 20, 100, 20, values[i]);

What we’d like to do is move them down not a full 100 pixels, but 100 pixels less

the height of the rectangle. So if we have a rectangle that is 20 high, we place it at 80;

if we have a rectangle 50 high, we place it at 50. We can have the program do this for

us simply by using 100 - values[i] as that second argument:

 rect(i * 20, 100 - values[i], 20, values[i]);

Here’s what the setup() function should look like with this line:

void setup() {

 size(200, 100);

 // rect(30, 15, 20, 10);

 for (int i = 0; i < values.length; i = i + 1) {

 rect(i * 20, 100 - values[i], 20, values[i]);

 }

 println(mean(values));

}

There’s really just one more thing to deal with. We have plotted all the data points,

and our program is computing the mean of those points, but we don’t have any graphi-

cal indication of where the mean is. The commented line (beginning with //) does

nothing when the program runs; it can be there or not. The line with println() “prints

Statistics, Probability, and Visualization	 223

out” the mean on Processing’s console, but it doesn’t do anything in the display win-

dow. What we would like to do is place an indicator of the mean on the chart.

There are a few ways to do this, but a simple one would be to draw a horizontal

line where the mean is. If you check the Processing reference, you’ll see that there is

a line() function that works to draw lines in a very general way. But let me suggest

that we can do something similar. Because we just want to draw a single horizontal

line, we can think of this line as a very thin rectangle, perhaps with no height at

all. We’ll still see it because rectangles are drawn with lines that have some width.

It just won’t have any internal area to be filled in. We already know how to draw

rectangles, so we don’t even need to look up how line() works to deal with our

immediate goal.

The upper-left point is going to be situated all the way on the left side of the win-

dow, so x should have the value 0. The rectangle will be 200 pixels wide (the entire

width of the window) and, as we discussed, 0 high. So the only tricky thing is placing

this line (this rectangle) at the right horizontal position. If we hadn’t flipped every-

thing horizontally, we could just use mean(values) as the y position. Because we have

flipped everything, we need to use 100 - mean(values). Then, we should add a line

like this one:

 rect(0, 100 - mean(values), 200, 0);

The only question is, where should we add it? If we place it before the loop that

draws the ten rectangles, it will be drawn “behind” those shapes. Try it out:

void setup() {

 size(200, 100);

 // rect(30, 15, 20, 10);

 rect(0, 100 - mean(values), 200, 0);

 for (int i = 0; i < values.length; i = i + 1) {

 rect(i * 20, 100 - values[i], 20, values[i]);

 }

 println(mean(values));

}

How does it look? I think it’s not a complete atrocity, but it’s also probably not the

best visual display. Try placing the mean line (which is actually a rectangle) after this

loop instead:

224	 Chapter 12

void setup() {

 size(200, 100);

 // rect(30, 15, 20, 10);

 for (int i = 0; i < values.length; i = i + 1) {

 rect(i * 20, 100 - values[i], 20, values[i]);

 }

 rect(0, 100 - mean(values), 200, 0);

 println(mean(values));

}

You may like this second version more or less, but in any case, you can see that you

have options. You should see that it’s also possible (although not very sensible) to put

the call to rect() that draws this “mean line” within the loop, either before or after the

other call to rect(). I consider that it isn’t very sensible because conceptually, I don’t

think anyone would really want to draw this line in the same place ten times. It only

needs to be drawn once.

After you’ve got this working, replace your use of rect() to draw the “mean line”

with a call to line(). Figure out how to do this by consulting the Processing reference.

Here’s what we have done so far, just in these first sections of this chapter:

•	 Computed the mean using Processing (having done it in Python already)

•	 Added code to Processing’s setup() function

•	 Specified the size of the drawing window

•	 Drawn a rectangle

•	 Used the Processing reference to understand what arguments functions take

•	 Commented out code

•	 Plotted data points

•	 Flipped a plot vertically

•	 Added a line to indicate the mean

Now, if all you cared about was making a simple plot of this sort, you could of course

use your favorite spreadsheet, such as LibreOffice Calc or Microsoft Excel. But you

wouldn’t learn much about how to computationally flip a graph vertically, how to

comment out code, or how drawing different elements of a picture results in shapes

being drawn on top of one another.

Statistics, Probability, and Visualization	 225

In the same way that you could use Glimpse or Photoshop to blur images instead

of writing your own custom code to blur them, you can use standard programs to

plot charts and graphs—and you should, when it’s appropriate. But if you’re going to

develop an artistic or humanistic project that uses data visualization in new ways, you

would like, of course, to be able to write programs that visualize data in new ways, not

simply to use the ones that conveniently produce standard charts and graphs.

[12.4]  Statistics, Descriptive and Inferential

We’re trying to learn about statistics, but so far, we have only learned to determine one

type of average, the mean—and actually just one type of mean, the arithmetic mean.

I’d argue that what we have done so far is just calculation; it isn’t even really statistical

thinking at this point.

I described statistics as a systematic, mathematically principled methodology for analyz-

ing quantitative data, but so far we have, at best, just grabbed and used one particular

method. Because we know nothing about our data, we don’t even know what type of

statistics we might be doing.

There are two main kinds of statistics: descriptive and inferential.

In descriptive statistics, our set of data is complete and represents the entire popula-

tion we care about. This population doesn’t have to consist of people, necessarily. If,

for example, someone says to us, “there are six coins in my pocket: two quarters, one

dime, and three pennies,” then we have essentially full information about the coins in

that pocket, not just a sample, and then we can begin to discuss that data. Of course, we

might decide that the owner of that pocket is more likely to be from the Unites States

than from Europe. If the information we have is “there is only one piece of string in

my pocket, 1.4 inches long,” we might not be able to do much statistical work with

this. We might be able to guess that the owner of the pocket is a very unlucky hobbit,

I suppose.

For the most part, though, descriptive statistics isn’t about making these sorts of

guesses, however amusing they may be, but about providing exact quantitative results:

The person in the first example can pay in exact change for purchases of 63 cents, 62

cents, 61 cents, 60 cents, 53 cents, and so on. The mean value of a coin held by that

person is 10.5 cents. Such analysis just tells us something about that pocket and those

coins; it doesn’t particularly allow us to infer anything else. A true census, involving a

head count, will get information from everyone, allowing for descriptive statistics work

to be done.

226	 Chapter 12

In inferential statistics, we have some quantitative information about a sample of a

population. Polling organizations survey a portion of voters, not every voter; they use

this to infer how an election will turn out. Medical tests are seldom done on everyone

in the world who has a particular disease or disorder; they are done on a particular

group. Inferential statistics work involves extrapolating from the sample (for which we

have certain quantitative data) to a larger population.

If we want to consider the ages at which people have been awarded the Nobel Prize

in Literature, it would make sense to consider our investigation a descriptive one. Our

information should be complete: we know what we know about the entire population;

we don’t just have a sample.

On the other hand, if we wanted to learn what we can about correspondence (writ-

ten correspondence, via letters) in a particular country in, say, 1850, or about manu-

scripts of music from the fourteenth century, it would make more sense to frame our

statistical investigation as an inferential one. We don’t have all of those letters, and

those manuscripts don’t all survive. In both cases, we have samples, and we will want

to use those samples to learn something about the broader, entire universe of (in this

case) inscription.

We’ve learned to take the average (the arithmetic mean) of ten numbers, using two

different programming languages. And we’ve learned to draw a chart representing

those values and that mean in Processing. But I claim that we aren’t doing statistics

yet because we don’t even know whether our data is telling us everything about a

population (and thus our activity is descriptive) or is a sample (and thus our activity is

inferential). Furthermore, and related to our not knowing anything about the data, we

don’t know that this particular average we’re using is the best one.

[12.5]  The Centers and Spread of a Distribution

Besides the commonly used mean, there are two other fairly well-known averages, two

ways to find the center of a distribution. This will all be (or has been) on the test, by

the way; the GRE covers these three types of averages and differences between them.

And in addition to finding one or more averages, or centers of a distribution, the other

very basic way of characterizing a distribution is to determine how spread out or con-

centrated it is—for instance, using the variance or standard distribution.

[Exercise 12-1]  Median

The median is the “middle point,” so that if you sort, for instance, 15 data points from

smallest to largest, point number 8 will be your median. If you have an even number of

Statistics, Probability, and Visualization	 227

points, there are two “middle points,” and the median is these added together divided

by two. In [1, 2, 3, 4, 5, 5, 5], the median is 4. If those numbers are jumbled into

a different order, it is of course still 4. Averages remain the same whatever the order of

the elements; they are properties of unordered distributions, not of sequences.

We haven’t yet said much about probability, which is essential to statistics, in this

quick discussion of statistical principles and visualization. It’s important at this point

to at least say what a distribution is because it was mentioned a few times in the previ-

ous paragraphs. It is the set of possible outcomes weighted by their probability. So, for

flipping a fair coin, the distribution is heads (50 percent) and tails (50 percent). In con-

sidering sets of data as distributions, each outcome (each element in the set) is equally

likely, but particular elements may recur. So in [1, 2, 3, 4, 5, 5, 5], seen as a dis-

tribution, 5 is three times as likely an outcome as either 1, 2, 3, or 4. Although hardly

a complete idea of distributions—and this quick discussion covers only those that are

discrete, rather than ones that might represent very fine-grained measurements, and

have arbitrary numbers after the decimal point—this is at least a starting point.

Understanding this, write median(), a function that accepts a list or array of num-

bers and returns the median. To understand how different programming languages

correspond, and how they don’t, write this function twice. Write it in Python, begin-

ning with the line def median(data):. Then write it in Processing. In this program-

ming language, float median(float[] data){ will be your first line. How exactly

you implement this, in each case, is up to you. You should first develop a function that

works with lists or arrays that have an odd number of elements. Then, after this works,

revise your function to work whether your number of elements are even or odd. Use

Jupyter Notebook for the Python version. As you work in Processing, save several steps

of progress in addition to the final function.

For this exercise, write your own median() function. Don’t use an existing one.

[Exercise 12-2]  Mode

The mode is the most common, or frequently appearing, value in a distribution. For

instance, in the previously mentioned set of values [1, 2, 3, 4, 5, 5, 5], the mode

is 5. A set of data can have more than one mode; if it has two, it is bimodal, and if it

has any number more than one, it is multimodal. For example, the set [10, 2, 8, 4,
0] has five unique values, so (although this may not be very useful to note) it is multi-

modal and has five modes.

Write mode(), a function that accepts a list or array of numbers and returns the

mode. Write it, once again, in both Python and Processing. How you implement it is up

to you. It will probably help if you first develop a function that returns a single value,

228	 Chapter 12

determining a mode of the data. In other words, it gives the right answer for a data set

with one mode, and it gives one of the modes for multimodal data. Then, after this

works, revise your function to work whether you have one mode or many. In revising

it, you’ll need to consider what type of value to return. A single number by itself will no

longer work for this second step. Save your progress in addition to the final function,

and at the very least save these two steps of development.

For this exercise, you are asked to write your own mode() function, not to use an

existing one.

[Exercise 12-3]  Variance and Standard Deviation

The other simple way to characterize a distribution, besides finding a center or average

of some sort, is by seeing how dispersed or spread out the data points are. For instance,

[5, 5, 5, 15, 15, 15] has a mean of 10, and [10, 10, 10, 10, 10, 10] does, too,

but these are clearly rather different distributions. In this particular case, the mode

would be informative about that difference, but we will not always be so lucky. We’d

like to have a general way to describe not just the center of a distribution, but how

data are distributed about the center. We can use a statistic called the variance. Once

variance has been explained, another measure of spread or dispersion will be easy to

understand: the standard deviation, which is just the square root of the variance.

The variance is the average (and specifically, the mean!) of the squared differences

from the mean.

Consider [1, 1, 7]. The mean is (1 + 1 + 7) / 3 = 3. Now we need to go through each

point and find how far it is from the mean, square that, and average all of those values.

So, 1 is 2 away from 3, and 22 is 4. The second value is the same as the first. And 7 is

4 away from 2, and 42 is 16. Then we determine the mean of those squared distances:

(4 + 4 + 16) / 3 = 8. That’s our variance. By the way, I said how “far away” each point

is as if I were taking a measuring tape and figuring it out that way. But you can just

subtract: 1 − 3 is −2, and −22 is 4; 7 − 2 is 4, and 42 is 16. It doesn’t matter whether the

distances from the mean are positive or negative because they’re going to get squared

and the final value will end up the same in either case, as the result of squaring −x is

the same as the result of squaring x.

The process is similar for any set of data: determine the mean, go through each

number, subtracting it from the mean and squaring the result, and then take the mean

of this new sequence.

Write variance(), a function that accepts a list or array of numbers and returns the

variance. After this, write the very short function stdev() to determine the standard

Statistics, Probability, and Visualization	 229

deviation. It should call variance(), of course. In Python, exponentiation, as in 22, is

done with the ** operator; to square two, just type 2 ** 2. Taking the square root is

the same as raising a number to the power of (½) or 0.5, so the square root of 2 is found

with 2 ** 0.5. In Processing, look up the function pow() in the Processing reference

to see how to accomplish the same thing.

[12.6]  The Meaning of the Mean and Other Averages

Having implemented functions to compute these three averages (mean, median, and

mode), let’s consider why one would want to determine any of them.

The idea of any of these is to determine a sort of center to the data points being

considered. This can be used to divide the data into greater-than-average and less-than-

average, or close-to-the-average and far-from-the-average, or just to generally charac-

terize the data. If you know that the average stay in your hotel is one week, you won’t

plan your whole hotel operations assuming that the average stay will be one night or

one month.

The mode, the most frequent value, is particularly useful with discrete data, as when

counting things. The 2000 census determined that the average number of children

(people under age 18), per family, is 0.9; that is, the average American family has 0.9

children. (This particular average, as you might guess, is the mean.) This number is use-

ful; if you compare by country, or by state, you can see where more or fewer children

per family are being raised. Still, obviously this does not mean that it is typical to have

nine-tenths of a child. If we wanted to know the most typical number of children to

have, we would use the mode. If we wanted to know the number of children that the

statistical “middle American” had, we would determine the median. In both of these

other cases, we would get a whole number.

Another consideration is that the mean is very sensitive to individual data points. If

one of them is severely in error, the mean could be severely affected. However, such a

problem would not affect the median or mode. Now, if one has carefully gathered each

data point and does not believe the extremes to be in error, perhaps it’s actually a virtue

that the mean is sensitive to each one of them.

The mode is not very sensible for a continuous measurement. For one thing, chang-

ing the accuracy of your measurement can radically alter the mode. [1.0, 1.0, 5.1,
5.3, 5.4] has a mode of 1.0, but if we lost one significant digit, we would have [1,
1, 5, 5, 5] and the mode would be 5. Something like this can happen at each step as

significant digits drop off of data.

230	 Chapter 12

One last note about these averages: they can work together to give you more infor-

mation, concisely expressed, about a distribution. If the mean is less than the median

(and thus, on a chart such as a histogram, further to the left of it), there will be more

mass on the right and the distribution can be described as skewed to the left because this

is the side where it will be more spread out. (In a histogram, unlike in the simple plot

we developed, there is an indication of how many occurrences there are of point 1,

point 2, point 3, and so on, in order.) The opposite is true if the median is less than the

mean; in that case, the distribution is skewed to the right.

Our explorations here will not provide a full course—even an introductory course—in

statistics. But I hope that this brief discussion at least helps to explain that these three

averages are not simply different blades of Swiss Army knife to be used interchange-

ably for prodding and prying. They are different methods that should, however they

are used, fit into a methodology and be used systematically, with a sensitivity for

discrete and continuous data and for the underlying reason that one is seeking an

average.

[12.7]  Gathering and Preparing Data

Because this book is about programming, our foray into statistics began by writing

some code. But the real starting point for statistical investigation is gathering, pre-

paring, and intelligently using data. We might examine some data and find shocking

results about the percentage of people who suffer harmful accidents. If we later learned

that this data is not from an unbiased sample of the population, but from patients pre-

senting in emergency rooms, we might be much less shocked.

Instead of considering data collected from a human population, let’s return to an

issue of editorially prepared data. We’ve discussed Project Gutenberg e-texts and some

issues with using these as data. Legal information has been added to these texts; it’s

typical that new editions, print or otherwise, will include such material, along with

other front matter. We can choose different formats, and some of them will model

different aspects of the particular text they are based on. HTML versions can include

italics, whereas plain-text versions do not. Typographically, you may find that the inch

mark (") is used instead of the opening and closing double-quotes (“ ”) that actually

appear in the original text, and similarly for single quotes, although many plain-text

versions have now been updated with typographical quotation marks. Lines are not

broken in the same place where they are in the original text, and all sorts of paratexts

and material qualities of the text (running heads, page numbers, the particular page-

by-page layout) are missing.

Statistics, Probability, and Visualization	 231

These qualities are missing, of course, because this is an edition and a model of a

particular earlier text, not a facsimile reproduction of it. (Plenty of those can be found

online, too.) Just as programmers choose what to model and what to intentionally

overlook as they develop abstractions, editors preparing a new edition of a book must

deal with this issue.

Project Gutenberg texts are not simply wrong, whichever types of quotation marks

are used. There are editorial decisions made and editorial practices followed in put-

ting together these digital books, each of which can be better or worse from different

standpoints. In using these books as data, it’s important to understand the abstractions

that these e-books are and what can and cannot be learned from them. This may mean

choosing the HTML version of the e-text, if italicization is important, or choosing

images of pages, if visual qualities of the book are important. You might choose to use

an edition prepared in accordance with the Text Encoding Initiative, the heavy-duty

markup method for humanistic study. Or your research might bring together more

than one type of edition. Finally, if one wishes to study aspects of a work that simply

are not encoded in available modern editions, it may be time to gather new data your-

self from primary artifacts—data that you should share so that other researchers can

critique and build upon your work.

The preparation of data involves gathering it or acquiring data that someone else

has gathered, cleaning the data to remove errors that do not reflect the underlying

phenomenon, and making intelligent use of the data as analysis of it begins. There

are numerous books on data gathering and cleaning; the ways you will engage with

these depend on whether you are gathering born-digital data online, using sensors to

acquire data, surveying people, or looking to digitized texts and images that have been

prepared with different sorts of editorial and curatorial care. But in any inquiry, there

is plenty to be done before the statistical analysis and plotting.

[12.8]  Probability and Generating Numbers

You may have noticed that courses introducing statistics are typically called “Introduc-

tion to Statistics and Probability.” This is not just a convenient two-pack. There is a

deep, underlying relationship between the two, and one can begin to get a feel for it by

considering that statistics works on samples of data. Probabilistic processes can be seen

as generating such data. A major point of statistics is to not just declare things about

this data, but to try to determine what process generated it.

For instance, let’s say you are given a long sequence beginning with:

tails, heads, tails, heads, heads, heads, tails, tails, tails, heads . . .

232	 Chapter 12

Let’s say you have another long sequence beginning this way:

female, female, male, female, female, male, male, male, female, female . . .

Finally, let’s say you have another long sequence beginning:

right, right, right, right, right, right, left, right, right, right . . .

We don’t need to know where these sequences came from to discuss them, but to be

concrete about things, consider that the first is a record of actually flipping a coin and

recording whether the coin comes up heads or tails. The second indicates whether

singleton children (i.e., children who are not twins, triplets, etc.) born in a particular

hospital were classified as male or female at birth. The third and final sequence indi-

cates whether people in a particular city are more left-handed or more right-handed.

We could critique these examples as only offering two choices in all of these cases.

A coin might land facing one way, be knocked off the table, and land facing the other

way. Is that two flips or one? Or is the whole thing invalid? Intersex children are born.

Some people are ambidextrous or switch between dominant hands depending upon

what they are doing. The data we have, like all data, is an abstraction involving choices,

not a perfect image of reality. While remaining aware of this, let’s consider that, given

the choice of abstraction that has been made, the particular elements in the sequence

are as accurate as they can be.

What we could notice is that the first two sequences, considered as samples from

a probability distribution, are very similar—in fact, basically the same. The process

underlying them can be described as follows: Choose each time between two equally likely

options. To describe it more generally, this is the uniform distribution over two discrete

values. You can have a uniform distribution over three values, too: choosing with equal

probability between rock, paper, and scissors is usually a very good idea. In fact, a uni-

form distribution can be over any number of discrete options or over some continuous

interval.

Now that we have noticed that the first two sequences not only look similar, but,

in fact, seem to be generated by the same distribution, we can also note that the third

sequence is not generated by this distribution. Left-handedness and right-handedness

are not equally common in the world at large or in the populations of different nations

or cities.

There is another reason the third distribution is different. In the first two, each value

is independent of each other value. Assuming that some coin flip didn’t physically

damage the coin and imbalance it (which seems a fair assumption), whether a coin

comes up heads or tails on one flip has nothing to do with the other flips. Whether a

boy or a girl was just born has nothing to do with the next birth at the hospital.

Statistics, Probability, and Visualization	 233

Well, almost nothing. Recall that I specified singleton births. If a woman gives birth

to several children at once, these children in some cases will be genetically identical.

And in that very specific case, there is a strong connection between several children

born in order at that hospital. The children will be of the same sex. However, the data

that we’re discussing do not contain multiple births.

For coin flips and births, it doesn’t matter how I sort the data based on underly-

ing features of the data. That is, if I decided to put every even-numbered coin flip

first, and then every odd-numbered coin flip, I would still see results consistent with

the uniform distribution. If I ordered births according to time of day, I would still see

results consistent with the uniform distribution. Obviously, if I put all the heads first

or all the female children first, the sequence that results doesn’t look much like it was

drawn from the uniform distribution, but that’s because this involves sorting the data

after seeing what values appear each time. There’s no way I can look at the underlying

description of each point and put them into an order like that, because whether I get

heads or tails, or male or female, doesn’t depend on anything except a random draw

from between those two equally likely options.

But for handedness, there is a different situation. Handedness is genetically linked.

So, if I were to sort the data by last name, for instance, I would expect to see more

clumps of left-handed people that I would if the data were arranged randomly. Also,

left-handedness is more common in men, so if the data were organized with all the

women first and then all the men, the two halves would differ. This distribution, there-

fore, is different from the uniform distribution in more than one way. Not only is

left-handedness much less often observed than right-handedness; the handedness of

different people is not independent.

This is an important connection to make, between probabilistic processes and the

generation of data (on the one hand) and statistical analysis to determine what under-

lying process generated data (on the other). It means, among other things, that the

random text generator you worked to modify in chapter 3 has something to do with

statistics!

[Free Project 12-1]  Reweight Your Text Generator

Do this project at least two (2) times. Return to your modified text generator from

free project 3-1, Modify a Simple Text Machine. Now, as a first step, make exten-

sive changes to the distribution of text it uses—without changing the set of texts.

You can accomplish this by simply repeating strings, so that some are selected more

often than others. For instance, if you are choosing between the two elements in the

list ['Awesome!', 'Oops!'], each will be chosen equally often. If you change this

234	 Chapter 12

to ['Awesome!', 'Awesome!', 'Awesome!', 'Awesome!', 'Awesome!', 'Awesome!',
'Awesome!', 'Oops!'], there are still only two possible texts, but the first response

becomes seven times more likely. If you changed the list to ['Awesome!', 'Oops!',
'Oops!', 'Oops!', 'Oops!', 'Oops!', 'Oops!', 'Oops!'], you would weight the

distribution in a different way. This might make the difference between representing a

highly skilled videogame player and one who is a klutz.

The main goal is to find interesting new weightings, but you should also see if you

can rewrite your program and find ways to avoid duplicating strings. When you have

the same string repeated seven (or more) times, it’s fairly easy for an inadvertent key-

stroke to introduce a typo to one of those copies. Also, you’ll end up copying, pasting,

and counting a lot of text to determine the weight of a particular outcome, which

could be expressed concisely if the program were written more clearly.

After you explore reweightings of the existing (unedited) texts that you have writ-

ten, continue by revising those texts: change the strings to other strings, in whatever

way you would like. Develop a new generator through this process of modification

that incorporates new texts and some nonuniform weightings. Try to let the qualities

of the distribution, not just the words you have selected, be important to the eventual

outcome.

[12.9]  Correlations and Causality

To close this chapter, some discussion (without any further equations or programming)

of where statistics and visualization can take you—where it no doubt will take you, if

you go further with it.

There’s not a huge amount of benefit to just plotting data and averages, as we have

done here. The benefit I hope to offer is allowing you to understand some statistical

principles, however simple, and to see how they work together and can connect with

programming and visual design. But plotting averages isn’t going to do much intel-

lectual heavy lifting.

If you have lots of data, you really want to find ways in which it’s correlated. For

instance, you might have some news feed data and some message/status/posting text

from people, with information about the time of posting in both cases. We might expect

that people will write to each other about news events, but is that the only correlation?

Does affect or self-declared mood vary in a way that is correlated to news writing? Do

people use more question marks or make more all-caps statements at some times? Or are

there some news stories that follow (in time, and also in causality) online discussion—

either because they are explicit about online discussion or in more subtle ways?

Statistics, Probability, and Visualization	 235

Visualization, with statistics related to one data source on the x-axis and those

related to the others on the y-axis, can provide a nice way to see where hot spots of

correlation are. You could also read through a grid of numbers; it’s a convenience to be

able to visualize them, though.

Although this book does not cover how to determine correlations, there are differ-

ent ways that are not too conceptually or mathematically heavy. As with the different

averages, the process of finding correlations should involve assessing these different

measures and understanding the principles upon which they are based.

Perhaps the most hot-button issue involving correlation that of its relationship to

causality. The reason statisticians look for correlations is, certainly, because they are

interested in learning about causality. However, seeing correlation may not indicate a

causal connection, and it never reveals, by itself, the mechanism of causality.

Let’s say we have A and B that look like they are reasonably correlated. Here are six

reasons they might appear this way:

1.	 A causes B, maybe through one or more intermediate steps. For instance, data about

a sample of a population shows that being recently convicted of a felony is corre-

lated with keeping a fixed residence for a while. The people we are considering are

mostly in prison. Being convicted led to their being in prison, and being in prison

means staying put.

2.	 B causes A, similarly. It’s not always obvious in which direction causality goes. For

instance, a researcher might observe that illegal drug use is correlated with other

criminal behavior. Someone’s first guess might be that doing drugs causes people to

commit crimes. But perhaps people who start off committing other crimes begin to

use illegal drugs essentially because of peer pressure, because such drugs are easily

available to criminals, or even because doing drugs is necessary to establish the trust

of other criminals. Even if there is a causal link between A and B, this doesn’t estab-

lish the direction of the causality.

3.	 There is some common cause for both A and B. An example might be sales of win-

dow air conditioner units and deaths from heatstroke. This correlation might seem

odd, because people cooling themselves with their new air conditioners would seem

to be less susceptible to heatstroke. It’s not the same people making the purchases

and dying from heatstroke, for the most part, however. What’s happening here

is that an underlying factor, temperature, varies seasonally and due to extremes

such as a heat wave. Both A and B increase as the temperature increases and

decrease as it decreases, although different parts of the population are involved in

A and B.

236	 Chapter 12

4.	 A and B reinforce one another. This case is similar to case 3 but might be distin-

guished. Having higher income might lead to better health (in the United States)

because one can afford better health care or perhaps higher-quality food and

improved maintenance of wellness. But poor health could also keep people from

working and earning money and thus cause financial problems.

5.	 A and B are measurements of the same thing. If you look at a temperature in Fahr-

enheit and the same temperature in Celsius, you’ll find that they appear strongly

correlated. Perhaps perfectly correlated. That’s because they are the same measure-

ment with different units. A and B could be less than perfectly correlated in this case

due to measurement or recording error. This is perhaps the limit case of case 3 but

certainly is an extreme situation.

6.	 There is no underlying reason for the appearance of correlation. In the previous

cases, there is some sort of causal link or links. But the reason for correlation—or,

to be precise, the reason for the appearance of correlation—might be no reason at

all. There’s a strong correlation between the consumption of chocolate in a country

and how many Nobel Prize winners that country has. Between 1997 and 2007 (at

least), autism diagnoses in the United States increased at almost exactly the same

rate as organic food sales. Perhaps most famously, the decrease in incidents of (true,

nautical) piracy almost exactly match the increase in average global temperatures, a

striking case of anticorrelation between piracy and global warming. Statistically, the

data seem connected, but consider: if we start with A and we then search through a

million different possibilities and find one of them, B, that is correlated with A, the

fact that we found this one correlation may simply be meaningless; it might just be

due to chance. With a large enough quantity of randomly generated data sets, or

data sets found in the world, we are sure to get some sort of appearance of correla-

tion somewhere. But that doesn’t really mean that there’s any relationship at all.

This is important to keep in mind if you are searching among a really vast space of

factors and find a few correlations that don’t seem to make sense to you.

Correlation is a signal—often a good signal—that there’s some sort of causal link

there and that further investigation should show what it is. But it doesn’t establish that

link, or what kind there is, by itself. It’s the beginning of inquiry rather than a resound-

ing, final conclusion.

[12.10]  More with Statistics, Visualization, and Processing

If you plan to work with statistics, some introductory study of the field would probably

be very valuable. This could come in the form of a classroom course, an online course,

Statistics, Probability, and Visualization	 237

or reading and working through an introductory book on statistics, such as David A.

Freedman’s Statistical Models: Theory and Practice.

To work with visualization in Processing further, see Ben Fry’s Visualizing Data:

Exploring and Explaining Data with the Processing Environment.

There are also several other good books on Processing. Unlike many books focused

on specific programming languages, they take an art and design perspective. This

makes for a pleasant journey through the language as these books explain and demon-

strate Processing in relation to programming principles and elements of visual design.

You have enough experience with Processing at this point to explore on your own,

but if you feel that you want to follow along in a book through more of Processing,

consider Getting Started with Processing by Casey Reas and Ben Fry; Learning Processing: A

Beginner’s Guide to Programming Images, Animation, and Interaction by Daniel Shiffman;

and The Nature of Code: Simulating Natural Systems with Processing by Daniel Shiffman.

The sort of introduction that is provided by the Processing reference and examples

is offered, alongside essays and interviews, in Processing: A Programming Handbook for

Visual Designers and Artists by Casey Reas and Ben Fry.

Processing has a lot of graphics capabilities built in, so you can do a great deal with

it without locating new libraries for it. However, to get further into statistics work, you

will probably want to use the Papaya library:

adilapapaya.com/papayastatistics/

In Python, our Anaconda distribution is purpose-built for managing data, doing sta-

tistical analysis, and creating visualizations. For instance, it includes NumPy (Numeric

Python, supporting matrix operations), SciPy (Scientific Python, with plenty of statisti-

cal functions), and matplotlib for plotting.

[Free Project 12-2]  An End-to-End Statistical Exploration

Prepare some data—for instance, text files or images. You have, of course, been working

with data of these sorts already. For this exercise, it is preferable to use born-digital data

rather than older data that has been digitized because you have control over how to

prepare such data rather than having it extensively prepared for you in a certain way.

However, if your interests are in earlier times and there is relevant digitized data that

you wish to explore, you can use this after you investigate how it was digitized and

prepared. If you are using data that you gathered, clean and prepare it, making sure that

this doesn’t lead you to lose file creation time information or other important metadata.

Then, write a program in Python or Processing that yields statistics of this data.

If you wish, visualize the original data or statistics of it; visualization is a means, not

http://adilapapaya.com/papayastatistics/

238	 Chapter 12

an end, so this isn’t a firm requirement. Whether by looking at numbers or a visual

display, see what you can identify that deserves further investigation. (This is the end,

the ideal outcome, of an exploration.) See what values seem surprising. Is there a great

deal of variance where you would expect little? Do some values that you expect to be

correlated seem to have no connection to one another, or is there anticorrelation (one

value rising as another falls) when you expected the opposite? Feel free at this stage to

determine correlations by using tools such as the stats module of SciPy, by inspection

of numbers that result, or by inspection of plots of those numbers.

The goal of this exercise is not to use statistics to come to particular conclusions, but

to use statistics to explore. A successful result would be noticing one or more surpris-

ing, unanticipated aspects of the matter you are investigating. So, you do not need to

write a paper about your topic and develop conclusions to complete this free project.

The end being sought here is not that final. You should just identify some new, unusual

qualities (and quantities) in the data.

If after finding something unusual, you do continue and investigate further, you

may discover some surprising underlying causes. You could end up writing about this

phenomenon without even mentioning the statistical analysis that led you to focus on

this particular aspect, just as a poem developed with computational assistance does not

have to be published along with the code that helped the author write it.

[12.11]  Essential Concepts

[Concept 12-1]  Programming Fundamentals Span Languages

There certainly are differences between Python and Processing, but the core aspects

of programming—including iteration, functions, and types—are essentially the same,

even though they are expressed differently in the two languages. Once you learn the

basics of programming (at least, programming in an imperative idiom, which is our

focus in this book), you can apply what you know by figuring out the differences in

syntax. It’s not necessary to learn new fundamentals. Be sure you can deal with itera-

tion, functions, types, and the conditional in Processing as well as in Python.

[Concept 12-2]  Different Averages Have Different Meanings

Understand not only how to compute the mean, median, and mode and how to

determine the spread of a distribution via variance and standard deviation, but also

what these simple statistics express about a distribution and in what cases they are

meaningful.

Statistics, Probability, and Visualization	 239

[Concept 12-3]  Probability and Statistics: Sides of the Same Coin

Perhaps even better: One of them can be said to govern the coin flip, while the other

is a way of analyzing flipped coins and learning about what led to those outcomes.

Understand how to use probability to generate “distributional” digital art (textual and

otherwise) and how to use at least the basics of statistical analysis to characterize a

distribution.

[Concept 12-4]  Visualization Should Be Principled

It’s fine to produce an aesthetically pleasing display of data that is nice to look at for

its own sake. But visualization can also be connected to statistical principles, allowing

the researcher’s sight to help distinguish what aspects of data are the most interesting.

Understand how the design of a simple visualization can facilitate better-grounded

statistical thinking.

[13]  Classification

[13.1]

Classification is the process of categorizing data into discrete sets. We have already cov-

ered some extremely simplistic cases of this process. In 7.5, Converting a Number to

Its Sign, we figured out how a function could classify numbers as positive, negative,

or zero. Also in that section, we saw how a classifier for the fictional twofold land of

Binaria could categorize Binarian names. Even with a very simple example of this sort,

it was possible to see that classification is a culturally loaded process with implications

for those who do not wish to fit into the classification scheme.

In this chapter, we’ll first discuss how to classify more complex data (books, repre-

sented as text files), initially using simple hand-crafted conditions. Then, we will use a

classifier that is provided by the TextBlob library to classify texts. Finally, we will look

at how some very simple sorts of image classification can be done, too, and provide

pointers to more typical ways of classifying images.

If you chose not to install TextBlob initially when you were first getting software set

up, you will now need to return to 2.5, Install a Python Library: TextBlob, and follow

the instructions there.

[13.2]  Verse/Prose Text Classification

Of the many types of text analysis we can conduct, one of the most straightforward

involves placing a text in one of a few known categories. The simplest case is when

there are two categories, as when we might want to distinguish fiction from nonfiction.

Let’s consider something that might be even more immediately visible to a human

reader just glancing at a text: classification of a text as poetry or prose. Or, to be more

specific, as either verse (lineated language) or prose (in those well-known rectangular

242	 Chapter 13

paragraphs, particularly visible when the text is justified). We won’t ask our system to

distinguish prose poems from short stories, but we will see how much effort it takes to

distinguish lineated language from language in paragraphs.

As with any computation, it’s possible to start figuring out how to implement a

verse/prose classifier by asking how a human reader would do this classification by

hand, or, more likely, by eye. A quick look at the Project Gutenberg editions of Pride and

Prejudice and Leaves of Grass (obtained back in chapter 9, “Text II: Regular Expressions”)

might prompt one or more of these ideas:

•	 Each line in prose paragraphs runs almost to the end (72 characters) until the final

line is reached.

•	 There are blank lines between prose paragraphs.

•	 There are also blank lines between poems and stanzas.

•	 Some verse lines are much shorter.

•	 Verse lines are irregular.

•	 Poems have titles that aren’t indented, while the text of the poem is.

•	 Groups of prose paragraphs are separated by numbered chapter headings.

Some of these are rather specific to the particular files selected. Whitman’s free verse

lines are more irregular than is metrical verse (Paradise Lost, Shakespeare’s plays or

sonnets, etc.), even though what is being counted out in meter is the number of feet,

not the number of letters. A long poem such as The Odyssey might have numbered sec-

tions (books) that look like chapter headings instead of having individual poem titles,

while some other long prose works (such as short story collections) are not divided into

chapters. Blank lines occur in various places, and there is no reason to think they will

consistently be more or less frequent in one type of text. But it’s reasonable to consider

that prose typically runs, in its rectangular way, consistently to the right side of the

page, resulting in lines that are long and fairly regular.

Okay, next, load up Pride and Prejudice and Leaves of Grass in a Jupyter Notebook ses-

sion that you start in the appropriate directory, where the two books are located. This

time, because we care about line length, we’ll use the readlines() method instead of

read(). The latter method placed the entire contents of the file in a single string. We

could go through this string and look for newlines, but using readlines() is easier. It

provides a list of strings (with each string a line of the file):

source = open('1342-0.txt', encoding='utf-8')

pride = source.readlines()

Classification	 243

source.close()

source = open('1322-0.txt', encoding='utf-8')

leaves = source.readlines()

source.close()↵

The extra argument to open(), specifying the encoding, is okay to use but not nec-

essary if you are running GNU/Linux or Mac OS X. Back in 6.4, Iteration (Looping)

Abstracts along Sequences, we looked at the following function to determine the mean

of a list of numbers:

def mean(sequence):

 total = 0

 for element in sequence:

 total = total + element

 return total / len(sequence)

This one should be familiar from the previous chapter, too! Let’s modify this slightly.

We will simply substitute len(line) for element. Instead of accepting a list of numbers,

this function accepts a list of strings (the lines in the file) and determines the length of

each one. Enter this version into Jupyter Notebook:

def mean_line_length(sequence):

 total = 0

 for line in sequence:

 total = total + len(line)

 return total / len(sequence)↵

I did actually made two other changes. Notice that there was no requirement that I

change the name element to line. For that matter, the function’s name didn’t have to

change to mean_line_length(). I just thought it would be a bit clearer to make these

two changes. The only thing that has to change for the function to work as desired is

that len() has to be called in the second-to-last line.

Now check the following:

mean_line_length(pride)↵

mean_line_length(leaves)↵

244	 Chapter 13

There’s a difference, certainly. It might be even clearer if we didn’t count blank lines.

Such lines probably aren’t going to be informative because both prose and verse texts

have them, and seemingly either one could have more or less. To skip them, we’ll have

to modify mean_line_length(). We can find out when a line stored in the variable

line is blank by checking line.strip(), which returns a string that has all leading

and trailing whitespace removed. If line.strip() has something in it, we’ll continue

to process the line. We can use a simple conditional statement, if line.strip():. If

there’s something in line, line.strip() will be True in this context, but if line has

only whitespace or is completely empty, the result will be False.

def mean_line_length(sequence):

 total = 0

 nonblank = 0

 for line in sequence:

 if line.strip():

 total = total + len(line)

 nonblank = nonblank + 1

 return total / nonblank↵

If you call mean_line_length() on both books after making this change, you’ll see that

the average lengths have been slightly pushed apart, by less than a single character, but

by more than half a character. So perhaps omitting blank lines doesn’t really matter.

Whether or not it does—and you’d really want to check some other data to figure that

out—what we did here is to try it out, to test our guess empirically.

For this exercise in manually building a classifier, we can find out what value is

directly between these two average values.

(mean_line_length(pride) + mean_line_length(leaves)) / 2↵

Make note of what this is, at least to two decimal places, and put it into this simple

classifier, in the blank:

def verse_or_prose(text):

 if mean_line_length(text) < ____:

 return "verse"

 else:

 return "prose"↵

Classification	 245

What results is a classifier—in that it does indeed put any Project Gutenberg e-book

into one category or the other. This is a trivial classifier in that it uses only one feature.

You can’t have one that is simpler. In addition, the dividing line between verse and

prose has been set in the simplest possible way, by inspecting only two data points.

You should check verse_or_prose(pride) and verse_or_prose(leaves) to make

sure that this classifier is wired up correctly for the two examples you looked at. And

after you check that and make sure that it’s working, load up Moby-Dick (be sure to use

readlines() as you did with the other two books) into the variable moby. Now, for the

moment of truth:

verse_or_prose(moby)↵

Admittedly, you can’t determine much from checking one additional book. To do

any real sort of test this classifier, you would need a corpus of books, a set of test data—

even if it is a tiny one, at first.

[13.3]  A Miniature Corpus for Training and Testing

To see how a corpus can be used in setting a dividing line and in testing, we’ll scale up

to what is still a very small-scale case, considering how you would use a corpus of only

ten documents in total. The extended exercise in this section is still much more lim-

ited than in any practical training and testing situation, but it illustrates the principles

of classification at work. It shows how to enlarge your corpus beyond the trivial case

of two training documents and one test document. It is an exercise rather than a free

project because the number of books, the type of classification, and the features that

you use for classification are all specified. The only thing that is “free” about it is that

you should select your own books to form your own corpus of documents.

[Exercise 13-1]  Train and Test on Ten Books

Download ten e-books from Project Gutenberg, five of which are prose books (they

don’t need to be fiction, just prose) and five of which are books of verse (poetry broken

into lines). These can otherwise be of your choosing. Be sure they are in a plain text

format, not in HTML. You can use Moby-Dick and Pride and Prejudice as two of your

prose books, if you like, and Leaves of Grass as one of your poetry books. I’ve used these

texts during some of the times and other texts at other times when I went through this

exercise. Whatever you choose, don’t select books that mix both types of writing.

Clean your data by removing the Project Gutenberg legal information along with all

other sorts of apparatus, all the front matter and end matter: editorial introductions,

246	 Chapter 13

prefaces, and so on. You want to have just the core text of these ten books when you’ve

finished.

Next, set aside three verse books and three prose books to use as training data, or at

least what will approximate training data. You will manually set a dividing line based

on the properties of this data. The other four books will be used to test your classifier,

so you can see if what you developed actually worked, at least in these cases. You will

not do anything with these books until you have developed a classifier using the train-

ing data.

Using your mean_line_length() function, determine the average (arithmetic mean)

length of the lines of the three training prose files. Then, average that—you should use

your mean() function—into your prose mean. Use mean_line_length() to determine

the mean line length of your three training verse files. Then, average that into your

verse mean. Midway between the prose mean and the verse mean will be the dividing

line your classifier uses when it comes to mean line length.

For this exercise, we’ll incorporate one additional feature that we’ll arbitrarily give

equal weight. In addition to considering the mean line length, the other feature we’ll

use is the variance in line lengths. Use what you learned about statistics in the pre-

vious chapter, and the way mean_line_length() works, to write a function called

line_length_variance() that will return the appropriate value for a document—that

is, a Project Gutenberg e-book. In the same way you manually found a dividing line

between prose and verse means, find a dividing line between prose- and verse-line

length variances.

Now, set your prose_verse() classifier so that mean line length is worth 50 percent

and line length variance is worth 50 percent as it makes classifications. Is it clear how

to do this? It can be done by multiplying each feature by the appropriate amount so

that each of the two features gets an equal vote.

This type of two-feature classification is the sort that might be used in a pass/fail uni-

versity course. Imagine a course in which there is an exam and a paper, each worth 50

percent of the grade, used to distinguish between students who pass and students who

fail. The exam and the paper are two different “features” that the instructor is using,

with equal weight, to classify students. Of course, if the test grades and paper grades are

on different scales, they will need to be normalized. Normalization involves dividing

by whatever the maximum possible value is. If the maximum exam score is 25, while

the maximum paper score is 100, normalizing these two grades properly will involve

dividing by those values.

After you have developed a classifier, the first thing to check is to see if all your train-

ing data is correctly classified. It may not be. In some cases, no line will divide the two

Classification	 247

categories based on the features selected. If the classifier doesn’t work perfectly with the

training data, it is very unlikely to generalize well to other data.

After checking the training data, try the test data with prose_verse() and see what

results you get. Remember that the point of this exercise is to go through all the stages

of developing a very bare-bones classifier, with two manually determined features that

are manually set, and then testing the classifier on data that you have held out. If your

classifier doesn’t work on certain examples, consider why the two features we used may

not be good ones to distinguish prose from verse when it comes to those particular

documents.

[13.4]  Building Up the Classification Concept

A classifier categorizes; in the case of a two-way or binary classifier, it divides a set of

data in two. Usually this is not done using a single feature, as was done initially, or two

features, as we did in the extended exercise in the last section. Rather than dividing a

line at a single point, a classifier can be seen as doing something more general: Dividing

a space (of any dimension) using some surface (of one dimension less than the overall

space). Strictly speaking, and to make this sound as cool as possible, a binary classifier

divides data using a hypersurface. In this most recent exercise, we had just two dimen-

sions of data—the mean line length and the line length variance—and the classifier

you developed, manually, will divide this data using a line.

Implicitly or explicitly, training a classifier involves finding one or (almost always)

more features that will be used to distinguish the data. In this case of the first verse/prose

classifier, only one feature was used, the mean line length. You extended this in the exer-

cise to two features, the mean of the line lengths and the variance of the line lengths. A

classifier that works on texts, such as emails, will often have many, many more features;

as we’ll see, a fairly simple classifier will have one per word in the overall vocabulary.

It’s important that some test data be held out when constructing a classifier, as was

done (trivially) with Moby-Dick at first and as was done with the two verse and two

prose files in the exercise. You can’t get any idea of how well your classifier works unless

you try it on test data of this sort. If you do keep some test data set aside, you can try

different features or otherwise tune your classifier to produce better results. You need

to always hold out some test data, unless you truly don’t care about how good of a job

your classifier is doing. And if that were the case, why would you bother to train a clas-

sifier at all?

You probably don’t need a computer system to tell you whether Moby-Dick is verse

or prose, but it may nevertheless be interesting to test the hypothesis that average line

248	 Chapter 13

length is sufficient for distinguishing these two categories of text. To develop a very

simple classifier, we only needed to use code discussed before (to determine the mean);

no sophisticated linguistic systems were employed. In the previous exercise, we went

beyond that to incorporate both the mean line length and the variance in line length.

Now that we have seen what a classifier is, we’ll move along to look at how far more

difficult distinctions—ones that might take human readers a considerable amount of

time—can be made automatically.

[13.5]  Text Classification and Sentiment Analysis

Let’s now move to a different, difficult problem, one that seems to go significantly

beyond the lexical level and even the structures of syntax. Texts signal to us, in various

[Figure 13-1]
Training a binary classifier defines a boundary between positive (+) and negative examples (-). The

simplest boundary for one-dimensional data is a point; for two-dimensional data, it’s a line such

as the thick one here. A classifier could however be trained to learn other sorts of boundaries, such

as the dotted circles. If it is trained this way, it will score perfectly on all the training data! But

it’s almost certainly inferior, a victim of overfitting, and won’t generalize well to new data. Using

held-out test data guards against this sort of problem.

Classification	 249

ways, what the attitude (or as a first step, the polarity) of the writer is toward the subject

matter being discussed. We understand a movie review to be negative or positive not

only by virtue of how many stars are assigned by the reviewer, but also because of what

the reviewer writes. In analyzing language, and particularly contemporary language

found online, it could be useful to systematically determine the sentiment of texts.

It would seem that counting words, or adjectives, and even knowing the parts of

speech of each word is not going to be a huge help by itself. Of course, it’s an empiri-

cal question. It could be that on a certain message board, blog, or site, the people

responding negatively are always snippy and write very short comments. People who

are positive always write longer, effusive comments. And so, if we trained a system on

this data, marking up which comments are positive and which negative, we might find

that there’s a very good dividing line at, for instance, 14.5 words and that this single

feature—the length of a text—suffices.

Such a finding would reveal the value of feature engineering, which is selecting what

features will be examined when training a classifier or other machine-learning system.

This could be the number of words, number of exclamation points, number of prepo-

sitional phrases per sentence, and so on. A feature can, of course, be mean line length,

as discussed in the verse/prose example. In addition, a feature can be the overall length

of the document, in words or characters, which might distinguish some negative texts

from positive ones. This feature, however, is unlikely to generalize very well. In a news-

paper in which all movie reviews are about the same length, for instance, it won’t be

possible to distinguish negative and positive reviews based on length.

If we were interested in building a sentiment analysis system from scratch—a highly

polished and truly useful one—we will certainly need to think about feature engineer-

ing. If we are improving such a classifier for use with specific data, or developing a new

classifier for our own purposes, we similarly will need to keep features in mind.

[13.6]  Training on Positive Words and Negative Words

As a starting point, we can simply use a set of words as features so that our program

considers how word occurrences differ between positive and negative texts. (Our view

of words, strictly speaking, is that of linguistic types, as discussed in detail in 15.2,

Words and Sentences.) In doing this, we make a common assumption in language

analysis—one that has been made in topic modeling, for instance, as well. We assume

that a text is an unordered set of words, a “bag of words.” The sequence in which the

words appear will be ignored.

250	 Chapter 13

I’ll explain before too long why this approach is limited and cannot capture all types

of variation in sentiment. The vocabulary found in enthusiastic, upbeat utterances or

texts does indeed differ from that produced by haters, however. And in some cases,

reference to that vocabulary may even be enough—just as sometimes, one can happen

to successfully split a text into sentences with a simple split('.').

Imagine a system that just looks at words and considers texts as bags of words. Awe-

some will probably have a strong positive score and icky a strong negative score, and,

although many other words might be neutral, in the end we can approximate the senti-

ment of a text from the sentiment of its words.

Now, in distinguishing shorter and longer lines, we used a classification function

that was incredibly simple. But in creating classifiers more generally, the simplest prac-

tical method involves constructing a naïve Bayes classifier. This is the same type of clas-

sifier often used in email systems to distinguish spam messages from those that aren’t

spam (which, in the business, are called ham).

The naïve Bayes classifier, by name, refers to the framework of Bayesian probability.

It is a good, simple classifier that is actually used in practical applications. We’ll con-

sider the simplest variation of this model, a binary classifier. But we will use more than

one feature. We’ll use a large number—one per word. So awesome will be a feature, and

so will icky.

The extreme and very useful assumption made by our type of classifier is that each

feature is independent (conditionally independent, to be precise) from all the others.

This means, specifically, that we assume the occurrence of the word doornail does not

make it more or less likely that we will see the word dead in the document, seeing lap-

top does not increase our chances of seeing computer, and seeing quarterback does not

indicate anything about whether we should see touchdown. Obviously, words are not

conditionally independent of one another. However, making the assumption of condi-

tional independence turns out to work very well in many cases.

There is a good and fairly short TextBlob tutorial on how to create your own classi-

fier, one for sentiment. It is called “Tutorial: Building a Text Classification System” and

is located here:

textblob.readthedocs.org/en/dev/classifiers.html

The tutorial shows how to create training and test data and how to create a new naïve

Bayes classifier trained on the training data.

To understand how to use TextBlob, go and read this brief tutorial. Follow the

instructions to import NaiveBayesClassifier. You’ll then create a new classifier called

cl using training data, as shown in the next line of the tutorial. If you find you are

http://textblob.readthedocs.org/en/dev/classifiers.html

Classification	 251

missing an NLTK resource that you need, just follow the instructions in your Jupyter

Notebook to obtain that resource.

You can use the training and test data provided in the tutorial, but here is some of

my own training data (or test data, if you like) for you to also try out:

sentiments = [

 ('Wittgenstein wrote one of the greatest philosophical works ever, an
incredible contribution.', 'pos'),

 ('The Oulipo is a radical, pioneering group that has shaped literary
history.', 'pos'),

 ('What an awesome sunset.', 'pos'),

 ('I love it!', 'pos'),

 ('Very good plan.', 'pos'),

 ('The final season of Game of Thrones made my eyes bleed.', 'neg'),

 ('Movies based on DC comic books are extremely tiresome.', 'neg'),

 ('That is a horrible idea.', 'neg'),

 ('I hate that sort of thing.', 'neg'),

 ('You lack imagination.', 'neg')]↵

There are several words that suggest a positive sentiment (greatest, incredible, pioneer-

ing, awesome, good, as well as possibly contribution and shaped) and some that intuitively

suggest a negative sentiment (tiresome, horrible, hate). Some of the negativity, such as

the figuration for crying in the sentence about Game of Thrones, might be very difficult

to discern at the word level. (This particular sentence, which I wrote especially for the

second edition, also reveals how long it takes to get a textbook revision through the

publication process.) Perhaps more disturbingly, if we continued along the same lines

and amassed numerous examples like these, we might train our system to find all refer-

ences to high cultural matters to be positive and all references to popular culture to be

negative. That might be how particular cultural commentators feel, but again, it would

not allow us to correctly classify texts in general based on their sentiment.

Let’s not speculate. The tutorial says we can use cl.show_informative_features(n)

to show us the n most informative features in that classifier. If you type in my training

data, train a classifier on it, and look at 10 or 20 of the features that have most weight,

you may be surprised! There are only three words out in front; every other word, if

informative at all, is equally informative. It’s unlikely you would guess that any of these

252	 Chapter 13

words would particularly indicate a positive or negative sentiment. And perhaps they

don’t, or perhaps this small amount of training data is way too little.

After you have trained a classifier, you can use its classify() method to give you a

simple categorization ('pos' or 'neg') for any text tested. You can also see what prob-

ability the classifier is assigning, for a particular text, to each of the two categories.

Try adding to the training data with the update() method, check the accuracy on

the test data, and try classifying sentences of your own.

At the end of this TextBlob tutorial on classifiers, the Feature Extractors section

explains that it is possible to expand the default features (simply the occurrence of

particular words/types) that are used for classification.

TextBlob provides a rich set of ways to do your own classification. Reasonably good

sentiment analysis is included, so it’s not necessary to build your own classifier to deter-

mine the polarity of texts, as we have done. If you wish to, though, you can build your

own classifier and even change the features that it uses. In fact, you cannot only go

under the hood and work with classifiers in this way. You also can rebuild the engine if

you like. The code for the naïve Bayes classifier is written in Python, and, for those of us

who have TextBlob installed, it’s sitting on our disk drives. We can read it to understand

how it works or do even more.

Here’s a significant line from the tutorial that gives us a clue about where the source

file can be found on our system:

from textblob.classifiers import naiveBayesClassifier

The first part of this import statement means that there will be a file classifiers.py

somewhere. Specifically, it will be located in a directory called textblob. That’s what

the two parts of textblob.classifiers correspond to. To find this file, I used the

command-line program locate. You can search for it using another method, such as in

your GUI. My file (I was using Python 3.7 at the time) was here:

/home/nickm/anaconda3/lib/python3.7/site-packages/textblob/classifiers.py

You could simply open this file in a text editor, as I did. In this file is the code for

naiveBayesClassifier, beginning (in this version) on line 289. There are just three meth-

ods defined there; it looks like the class is mostly a wrapper for the NLTK (Natural Lan-

guage Toolkit) classifier. But the code for that, too, is right there on disk, in my case at:

/home/nickm/anaconda3/lib/python3.7/site-packages/nltk/classify/naivebayes.py

There’s the core of TextBlob’s naïve Bayes classifier. At 256 lines, it’s not as concise

as the code we’ve been writing, but it’s also not beyond understanding. For instance,

Classification	 253

without getting into fine details, and without asking why this particular code was writ-

ten, consider lines 112–121:

 for label in self._labels:

 for (fname, fval) in featureset.items():

 if (label, fname) in self._feature_probdist:

 feature_probs = self._feature_probdist[label, fname]

 logprob[label] += feature_probs.logprob(fval)

 else:

 # nb: This case will never come up if the

 # classifier was created by

 # NaiveBayesClassifier.train().

 logprob[label] += sum_logs([]) # = -INF.

You should be able to see that those first two lines are a programming construct you

have used: a nested loop. This part of the code does something for each label, and

within that loop, it does something for each item in the feature set. Each item, in this

case, is a tuple containing the feature name and the feature value. You learned about

this data type in 10.2, A New Data Type: Tuples. After this is another familiar construct,

the conditional.

My point is not to explicate this code, or even a tiny part of this code, but to show

that if you do peek underneath the abstraction layer, you’ll find the same essential sort

of programming you’ve already been doing. More elaborate, yes, but using the same

principles.

Looking through the files and reading the methods, their arguments, and the begin-

ning of what each does can be informative in some cases. Of course, the documenta-

tion should provide all the information that is needed to use this classifier, but Python

modules are made of code that is available to whoever wishes to inspect it.

[13.7]  A Thought Experiment about Sentiment and Word Order

Consider the following two texts, the first one consisting of three sentences, the second

one of two. Do they convey more of a positive or more of a negative sentiment?

Windows absolutely rocks. It never sucks. Start me up!

Windows ME absolutely sucks rocks. Never start it up!

254	 Chapter 13

Those who are fluent in English and know colloquial, contemporary English would

have to agree that the first text is definitely expressing a positive sentiment, while the

second text is definitely expressing a negative one. The topic of the two texts may be

slightly different; the enthusiast who utters the first one may be speaking about the Win-

dows operating system in general, or maybe Windows 95 (the Rolling Stones song “Start

Me Up” was used to promote that version), while the second speaker is specifically slag-

ging a later but still archaic version, the Windows Millennium Edition (Windows ME).

Still, the difference in sentiment is pretty clear. The first text is definitely positive,

the second one definitely negative. People wouldn’t be confused about this.

Notice, however, that these two sentences have exactly the same words, whether

“words” is taken to mean types (number of unique lexemes) or tokens (particular

occurrences of types), a distinction explained in detail in 15.2, Words and Sentences.

The second text is just a rearrangement by word of the first; it can be seen as a “vocabu-

laryclept” text created from the first. Here’s an even simpler vocabularyclept example:

This movie was a great experience, and not disappointing.

This movie was not a great experience, and disappointing.

If you consider, as I do, that these are both plausible examples that are representa-

tive of the way language works, rather than completely freak occurrences, it’s a real

problem for the bag of words assumption being applied to sentiment analysis. You

might find that for a certain corpus, this assumption does all right—perhaps about as

good as human annotators do. But you can be sure that there are texts (and perhaps

significant corpora of texts) where these features won’t be enough. The only way to test

out how much this difference matters is to train two classifiers, one that uses the bag

of words assumption and one that takes word order into account, and see how they do.

One way to take order into account is to add features to the handcrafted sentiment

classifier that you have built. The Feature Extractors section, at the end of the tutorial,

explains the basics of how to do that. Another is to change to an entirely different

model of classifier, then train that type. Instead of focusing on either of those methods,

though, let’s move on to work with the advanced sentiment classifier that already takes

word order into account, one developed and trained by natural language processing

researchers and included in NLTK and TextBlob.

[13.8]  Using the Included Sentiment System

When starting a new session in which the TextBlob class hasn’t been imported, be sure

to import it:

Classification	 255

from textblob import TextBlob↵

Now, let’s check to see what the sentiment of two similar sentences is according to

TextBlob’s built-in, pretrained sentiment analysis.

TextBlob('This movie was a great experience, and not disappointing.').sentiment↵

Notice that what the line above does is to create a new TextBlob object using that

sentence, which is passed to the TextBlob constructor as a string. Then, the sentiment

attribute of this object is returned. As written, however, the TextBlob object is just

thrown away. This new TextBlob object isn’t assigned to a variable, so there’s no way to

access it after this line of code runs. One would need to create another TextBlob using

the same string in order to access any other methods or attributes.

Also, notice that the output isn’t simply 'pos' or 'neg', and indeed isn’t simply a

positive or negative number. It is an object, and when we see it printed out as a string

there are two attributes that are exposed to us. The second one is subjectivity. It indi-

cates whether (according to the classifier) the text is subjective or not. It doesn’t make

much sense to ask if “Mass can be converted into energy” has a positive or negative

sentiment because it’s about as objective a statement as can be made. Try creating a

TextBlob using this sentence and checking the sentiment attribute: you should see that

the value for subjectivity that is assigned is zero.

I would suggest that not only word order but also significant amounts of context

are necessary for anyone (human or computer) to determine whether some particular

sentences are subjective or objective. It sounds to me, for instance, that “His character

is chaotic good” makes for a completely objective statement, as much as the one about

mass and energy, but I have to admit that it’s only objective if one is speaking liter-

ally about someone’s Dungeons & Dragons character. If the statement is being used to

describe someone’s personality, it would certainly be at least somewhat subjective. The

version of the TextBlob sentiment analysis system that I used determined that this text

is 0.6 subjective—with the subjectivity in the range from 0 to 1.

Another difficult-to-handle example is “She is a criminal.” If the person being

referred to has been convicted of a crime, this is presumably quite an objective state-

ment that describes that person’s legal status. If the statement is being made figura-

tively, perhaps of a CEO who has not literally been convicted of a crime, it would

have to be seen as subjective. The subjectivity assigned by TextBlob to this sentence

is 0.55.

So, subjectivity is not always simple to determine. Taking context into account

may ultimately be the right solution, but something that can also help a great deal is

256	 Chapter 13

training one’s subjectivity classifier on data that is similar to the data being classified.

Movie reviews were used to train the classifier included with TextBlob, so it will prob-

ably happen that words and phrases pertaining to movies and used in reviews will be

better identified as subjective or objective. I note that “He is a star” is a completely

objective statement (subjectivity of zero) according to the classifier, which is perhaps

justifiable in the movie domain but not in other contexts.

Without trying to investigate exactly why these examples are classified the way they

are, it’s still worth nothing that the source of training data could have something to

do with it. Because movie reviews may be more likely to speak of someone’s perfor-

mance as criminal than they are likely to document people who have literally commit-

ted crimes, the subjective sense of calling someone a criminal may dominate. Because

someone can objectively be called the star of a film, calling someone a star may be

recognized as objective.

So that’s a bit about subjectivity and why one would want to detect it. Onward to

what we came for, polarity. You should have already checked the sentiment (and there-

fore the polarity) of this sentence:

TextBlob('This movie was a great experience, and not disappointing.').sentiment↵

Now, try this one:

TextBlob('This movie was not a great experience, and disappointing.').sentiment↵

The polarity is different: the first sentence is recognized as positive and the second

sentence as negative. From this alone, without looking into documentation or code,

you can tell that the classifier is somehow taking word order into account. Whether it’s

doing that with some entirely different classifier model or is simply looking for words

that are negated, there is some method that takes into account more than just pure

occurrences of tokens.

The polarity is also returned as a number between -1.0 and 1.0. One interpretation

of this is that slightly negative comments can be distinguished from very negative

ones. Another interpretation would be that the number is providing a measure of con-

fidence, indicating how certain the positive or negative classification is, based on the

training data and the classification technique.

These are actually different interpretations, but not entirely inconsistent. In cases

like this, the best interpretation may depend not on the algorithm you use or the

assumptions behind your mathematical framework, but on your interpretation of the

original training data. For instance, let’s say you want to determine whether words are

English words or not, and you have a labeled data set, with 1.0 meaning it’s definitely

Classification	 257

English and 0.0 meaning it definitely isn’t: “the” gets a value of 1.0 while “qwxqwx”

would rate something very close to 0.0.

Now, consider that one of the words is riverrun, which isn’t in a typical English dic-

tionary but is the first word of a famous English-language literary work. Let’s say that

in your data set, riverrun has been assigned 0.7. Leaving aside the question of whether

that’s an appropriate value, what does the value mean?

One possibility is that the person who assigned it thought, “I’m sure that this is

more an English word than not, but I’m also sure that it doesn’t have as much ‘Eng-

lishness’ as it could. It’s just sort of English, or slightly English, so I’ll give it a 0.7.”

Or maybe that person thought, “I’m uncertain as to whether this is an English word.

I think that all words must be either English or not, but one can be uncertain about

which category a word is in. I’m fairly sure that this one is English, but because of my

uncertainty I’m going to put down 0.7.”

If the entire set of training data is labeled consistently in the former way, it would

be reasonable to interpret a new word that is assigned the value 0.7 as being, simi-

larly, on the English side but only sort of or slightly English. If the entire data set

was labeled by one or more people who thought like the latter annotator, the result

could be interpreted as indicating some uncertainty. However, if annotators just put

words into English or non-English bins, always assigning 0 or 1, it won’t be nearly as

easy to use the way the data was labeled to provide an interpretation of values such

as 0.7.

That this classifier was trained on recent movie reviews affects not just the deter-

mination of subjectivity, but also the determination of positive and negative polarity.

Such caveats are not meant to deter anyone from using sentiment analysis systems, or

other types of machine learning systems, in artistic or humanistic projects. It’s simply

important to understand that not only the effectiveness of the algorithm but also the

quality and relevance of the training data are important to getting meaningful results

that lead to insights.

There are other fundamentals of natural language processing and machine learning—

true fundamentals that are important for those who plan to make use of existing sys-

tems even if they do not plan on developing new ones. These include the difference

between precision and recall, bootstrapping, overfitting, the difference between phrase

structure parsing and dependency parsing, and ways to approach topic modeling. This

chapter doesn’t explain all of these, but it is meant to explain some of the essentials of

both NLP and machine learning. Classification, in the specific case of sentiment analy-

sis and more generally, is one very relevant fundamental.

258	 Chapter 13

[13.9]  Approaches to Text Classification

Classification (and particularly binary classification) is a relatively straightforward task,

in that the system is not trying to model elaborate syntactical structures, as is done in

parsing. However, the relatively simple process of classification can be very useful in

text analysis and relates to concerns in the humanities. We’ve looked at a number of

ways that a programmer, even one without extensive or professional experience, can

work with text classifiers:

1.	 Use an already developed classifier, already trained, such as the sentiment analysis

system from NLTK/TextBlob.

2.	 Use an already developed classifier, such as this sentiment analysis system, but

retrain it using labeled training data.

3.	 Develop one’s own classifier of a standard type (e.g., a naïve Bayes classifier) using

the standard feature set for text—using word occurrences as features.

4.	 Develop one’s own classifier of a standard type using a different, nonstandard set of

features.

5.	 Modify classifier code so that it works for one’s own classification task.

6.	 Write a program from scratch to do classification, implementing a standard or ad

hoc classifier algorithm.

In all but the first case, training and test data is needed. In the first case, the data the

system is trained on needs to be similar to the documents in the corpus that are being

classified.

The last two cases are the only ones in which one actually rewrites classifier code.

Programming is used in the other cases—to iterate through the corpus of documents,

to train and test the classifier (in all but the first case), to develop a new classifier (in

the third and fourth cases), and to specify new features (in the fourth case). But in all of

these cases, the code of the classifier itself is helpfully abstracted away, bundled up and

encapsulated, and the programmer uses methods to set things up. One can go look at

the classifier code to see how it works, but it’s not necessary for the programmer seek-

ing to use a classifier in a program.

For most text analysis purposes, it won’t be necessary to undertake 5 or 6. That work

will be done by computer science and computational linguistics researchers who are

developing new low-level classification techniques. There are only a few cases in which

an artist or humanist might work at that level. If you want to implement a classifier on

an unusual platform, for instance as part of a physical computing project, you might

code a classifier from scratch. Or you might write a short and quick program, as we did,

Classification	 259

if you know that a single feature (such as our average line length) is really enough to

divide a corpus of data into two classes.

In any investigation of text that involves classification, part of your challenge will

be determining which of these six approaches to take. To do that, it’s important to

bring one’s awareness of programming fundamentals to bear on the problem.

[Free Project 13-1]  Your Very Own Text Classifier

Do this project at least three (3) times. Using TextBlob, develop your own binary clas-

sifier. It’s fine to use the naïve Bayes classifier. You will need to develop a labeled data

set, set aside some of that data for testing, and use the rest of the data for training. And

of course, in doing so, it will be necessary to determine the categories you are going to

use for classification of this data.

[13.10]  Trivial Image Classification

To see that classification applies across media, and as a concluding palate cleanser,

we’ll turn to a very simple case of image classification—again, using one global feature

to classify images that would be easily classified by a human viewer. At least, we’ll use

one feature at a time; we will try out a small number of features. The point here is to

show that the basic concepts we saw in introducing text classification apply in image

classification as well. While this will not be a sophisticated use of image classification,

it will be possible to conduct this classification on an ordinary computer, without the

need to use cloud services or have a high-end GPU installed. We also will prepare our

own tiny data set.

We will obtain a set of ten images, each of which is a photograph of an outdoor area.

Of these, five will be taken during the day and five at night. Six of these (three day and

three night) will be used as training data, and four (two day and two night) will be our

test, exactly as with the miniature prose/verse classification we did.

[Exercise 13-2]  Train and Test on Ten Images

Download ten outdoor photographs using the image search function of whatever

search engine you usually use. For many people, of course, this will be Google, but you

can also use a search engine such as DuckDuckGo, which lets you easily and directly

view the image file for downloading. These images should be in JPEG format (the file-

names should end with “.jpg”), half taken at night, half during the day. A watermark

or small signature may not matter, but to the extent possible you should avoid using

images that have text added to them, that are screenshots with nonphoto elements,

260	 Chapter 13

or that otherwise contain anything other than a photographic image. Aside from this,

your images can be of any size and can be of your choosing.

These photographs may be taken in very different ways, with different cameras and

settings, of many different sorts of places. Don’t worry about whether the images you

have downloaded are supposed to provide a true picture of the natural world. We are

just looking to see, as with prose versus verse classification, if we can train a trivial

classifier to use one feature and distinguish what a person could tell at a glance: Is the

photograph taken during the day or at night?

As with your e-books, set aside three day images and three night images to use as

training data. Again, you will manually set a dividing line based on the properties of

this data. The other four photographs will be used for testing.

At the end of 10.4, Pixel-by-Pixel Image Analysis and Manipulation, a redness()

function was introduced. That version of it only worked on square images 100 pixels

on a side, but you were asked in the next section to generalize the function and to nor-

malize the return value based on the area of the image. Use your completed redness()

function as the one feature in your classifier, setting the dividing line according to the

training data. Then see how well this generalizes to your test data. The process here is

the same as with the ten e-books in the previous exercise, except simpler: you are using

only one feature instead of two equally weighted ones.

After checking to see how redness works to distinguish daytime from nighttime

photographs, develop a brightness() function that simply returns the average color

value of a pixel—including red, green, and blue. This will be very similar to redness and

simplified in some ways. Determine a dividing line based on your training data and test

it on your test data.

Any image classification task will use thousands of images rather than ten. Assem-

bling a data set, cleaning the data, and labeling it is sure to be an involved process

that will likely occupy much more time than programming and training the system.

The training process will not be setting one feature manually, but will involve using

machine learning techniques. Nevertheless, the essential ideas of classification are vis-

ible in the manual processes you have undertaken in this chapter, using both texts and

images. In addition, classifying both sorts of media shows that classification is a general

technique that can work on different sorts of humanistic data.

[13.12]  Essential Concepts

[Concept 13-1]  Long Texts Can Be Classified

Computer programs can classify not only numbers and strings, but also more complex

data—for instance, entire e-books. You should understand how to use a single rule to

Classification	 261

classify documents and how this rule can be bundled up in a short function of your

own devising.

[Concept 13-2]  Classification Uses Features

Whether determined by researchers who do feature engineering or extracted automat-

ically—as with the naïve Bayes classifier, which extracts words observed in the data to

use as features—certain abstractions, features of the data, are the basis for classification.

If these features do not capture critical aspects of the data, this will cause problems for

attempts at classification.

[Concept 13-3]  Sentiment in Texts Can Be Classified

Sentiment analysis, when used simply to determine the difference between positive

and negative sentiment, provides an example of text classification. You should under-

stand the power and some of the limitations of this type of classification and know

how to use the built-in classifier.

[Concept 13-4]  Classifiers Are Trained and Tested

Whether you look into the details of how a classifier works or not by reading the

code—you can let that remain encapsulated, if you like—almost any classifier you use,

except for a few toy examples in this book, will be trained on a substantial data set.

You can do the training yourself (and should understand how to do so!) or, in some

circumstances, may wish to use a pretrained classifier. When training, it is necessary to

hold out some data to test the classifier; otherwise, there will be no way of estimating

how well it performs.

[Concept 13-5]  Classification Is a Cross-Media Technique

After understanding how text, including long documents, can be classified, you should

develop an understanding of the way that images, and pairs of images and texts, can

be classified as well—for now, understanding that images also have features that can be

manually selected or extracted.

[14]  Image III: Visual Design and Interactivity

[14.1]

Having looked at pixel-by-pixel image processing, we’ll now consider how computers

can generate images in a way that relates more directly to the concepts of designers

and artists—using some of the elements of visual design. Processing is built especially

to help programmers sketch and explore visual designs in ways that leverage computa-

tion. In this book, we will only consider what is usually called two-dimensional visual

design. We won’t be covering 3-D graphics at all, although Processing allows program-

mers to sketch 3-D graphics. The extra “dimensions” into which we will extend our

work are those of time (by responding to the time of day and creating simple anima-

tions) and interactivity (by allowing controls to change the visual display).

[14.2]  Drawing Lines and Shapes on a Sketch

We have already used Processing to present a very simple data visualization, in 12.3,

A First Visualization in Processing. In this section, we’ll return to confirm our under-

standing of how Processing allows us to use primitives that are motivated by graphic

design. This is in contrast to directly manipulating pixels, which are the underlying

elements of a computer image.

You figured out how to draw a horizontal line in Python at the end of 10.3, Generat-

ing Very Simple Images. This was a very low-level procedure, in which your program

changed the color value of individual pixels. While a visual designer can think about an

image as a grid of tiny elements, each with its own color, it is standard to think about

visual design at a higher level. The elements of visual design are not just pixels, but

include line, shape, intensity (how close a gray is to white or black), and color. There

are other aspects of visual design often considered fundamental, but some of these,

such as an image’s focal point, are composite features and cannot be placed on a sketch

264	 Chapter 14

using quantitative directions. Artists who learn to draw and paint (on paper and can-

vas) also explore the expressive quality of different sorts of lines. In Processing, there

are ways to produce different sorts of lines, but these do not capture all the expressive

sorts of ways that people draw and paint lines.

With these qualifications in mind, understand that Processing is set up to allow

programmers to easily draw lines from any point to any other point on a sketch—as

Python and PIL are not. Its facility for drawing lines is much better because it provides

an abstraction of the line useful to graphic designers. You know how to have your pro-

gram draw a line in Processing already—a horizontal one, at least—because you placed

a line representing the mean on that sketch in 12.3, A First Visualization in Processing.

Recall from there that Processing has a line() function. Given this, we will jump right

in with an exercise, with the special requirement that you not consult online resources,

or even the Processing reference, as you figure out this exercise.

[Exercise 14-1]  Draw a Diagonal Line

Using only this book and your previous work as a reference, create a new Processing

sketch that is 800 pixels wide and 600 pixels tall. Recall that you need to place a line

of code within the setup() function to specify this. Set the background of the sketch

to be white, using a Processing function called background(). (Instead of looking up

how this works, just try it out and see if you can figure it out.) As we did in 12.3, A

First Visualization in Processing, we are seeking to simply output one static image.

That means the drawing your program does can also be done with code in setup(),

as before. Simply have your program draw a black, diagonal line from the upper-right

corner to the lower-left corner.

You should use three methods here:

1.	 Decompose your programming work, even though this is a small and easy task, into

smaller pieces. Drawing the line can be seen as the last step, for instance.

2.	 Look back at your previous successful project, which is very similar. Also, look back

at the book to understand this project and how the necessary parts of Processing

work. You don’t need to use any functions other than ones you have already used,

so don’t confuse yourself by looking for other ways to do this right away.

3.	 Use trial and error as you write the program. For instance, start with a horizontal

line in the middle, if you like, and modify the end points one at a time to see if you

understand how your changes cause the line to change.

After you’ve done this, we’ll move along to use Processing’s ability to easily draw

shapes. We’ll draw circles starting with a circle at (56, 46).

Image III	 265

From a design perspective, and taking a general view, a circle is an ellipse (also

known as an oval) whose width and height are equal. Check out the Processing refer-

ence for the function ellipse() and write some code to quickly try it out, following

the example there. Go ahead and change what you’ve drawn so that your circle is filled

and, specifically, is all black. You do this using fill(), which you can also look up in

the Processing reference. Finally, let’s shrink our circle so that it is 20 pixels wide and

(because it’s a circle, it follows that . . .) also 20 pixels tall. That means that if you fol-

lowed the example in the Processing reference and set the coordinates properly, your

modified call to the function will be ellipse(56, 46, 20, 20).

Now I’ll explain how to do something a bit more interesting. We will develop a

Processing sketch with a “line” of circles going diagonally from upper right to lower

left. In graphic design terms, this will certainly be a line. But I’m putting “line” in

quotation marks because we won’t use the corresponding Processing function line().

We will have the program proceed from corner to corner, using iteration and drawing

circles as it goes.

Go back to your 600-pixel-tall by 800-pixel-wide sketch, from the exercise you just

completed. Save a new version of this code as we’ll work by modifying it. Leaving

everything the same, we’ll get the first circle in place. By default, the first two argu-

ments to ellipse() are the coordinates of the center. The center of this first circle

should be 10 pixels from the top edge of the sketch and 10 pixels from the right edge.

The x coordinate comes first: the right edge is 800, and 10 pixels in from that is 790.

Next the y coordinate: the top edge is 0, and 10 pixels underneath that is 10. So to draw

our first circle, we’ll use this line of Processing code:

ellipse(790, 10, 20, 20);

You’ll need to place this at the appropriate point in the setup() function. Also, you’ll

need to use fill()—in exactly the same way you already have—to have this circle

filled in. Once you have this working, we can add the last circle that we wish to draw.

This will be the one with a center 10 pixels from the bottom edge of the sketch and 10

pixels from the left edge. The x coordinate is first, and because we’re just moving 10 to

the right of 0, it will be 10. For the y coordinate, the sketch is 600 pixels high, so 590 is

the point 10 pixels above that edge. The line of code is:

ellipse(10, 590, 20, 20);

Now what we need to do, pretty much literally, is connect the dots. We want to set

up a for loop that starts at the coordinate (790, 10) and ends at (10, 590). So far, I haven’t

said anything about how the circles should be spaced. But I would definitely like them

266	 Chapter 14

to be evenly spaced. Let’s say that we’d like them to start and end in these places and

to be evenly spaced. Strictly speaking, we have met that requirement already, in a trivial

sense. There is a start circle and an end circle, with no circles between, currently. For

this example, we will have our code draw twenty circles. Because the horizontal dis-

tance to be covered is 780, each step means moving the center horizontally by 780/20.

The vertical distance is 580, so the vertical step is 580/20. Of course, we could compute

these and stick the results into our code, but why? This would obscure how we arrived

at these values, and we might make a mistake entering the computer values, and we

have a computer right here to do this sort of work for us.

for(int circle = 0 ; circle <= 30 ; circle = circle + 1) {

 ellipse(790 - ((780 / 30) * circle), 10 + ((580 / 30) * circle), 20, 20);

}

Plug this in and take a look at the result. See what you need to change to draw more

circles (say, forty) or fewer (say, ten).

Although I am not going to explore this in detail, if you change the number of cir-

cles to thirty, you will see that the line doesn’t make it exactly to the lower-left corner.

In Processing (unlike in Python 3), dividing two integers gives an integer result, trim-

ming off a tiny bit of the horizontal change each time a circle is drawn. By the time the

process reaches the lower left, the discrepancy is visible. You can explore how dividing

by 0.0, as opposed to 0, yields a different result in Processing by using the println()

function. Work at this further to figure out how to solve this particular problem, too.

[Exercise 14-2]  Draw Shapes of Decreasing Size

Having drawn a line of shapes, each the same size, using a for loop, you should now

make two minor changes to confirm your understanding.

First, change the code so that the size of the circles is reduced. The top-right circle

should be 20 pixels in diameter, as now, while the circle in the lower left should be 10

pixels in diameter, and the transition should occur smoothly.

Second, change the code so that instead of the line of circles starting in the upper

right and going to the lower left, it begins on the left side in the middle of the sketch

and ends on the right side in the middle of the sketch.

[Free Project 14-1]  Recreate Geometric Designs

Do this project at least three (3) times. For this project, choose a simple but inter-

esting geometric design—for instance, one that you’ve found on a book cover or one

Image III	 267

featured in some organization’s logo. Using shapes and lines, recreate this design. Try

to do it in very few lines of code. Instead of drawing each line of a rectangle individu-

ally, for instance, you should certainly use the rect() function. But you should also do

the sort of programming you did in the last exercise, using a for loop to produce several

regular elements when there are such elements in your design.

[14.3]  Updating a Sketch Frame by Frame

To see how animation works, we’ll begin with a very simple sort of animation. We’ll

draw a rectangle on the left side of the window and will then move it across the win-

dow to the right. We’ll use Processing.

In creating a static image in Processing, we used the setup() function to do all the

drawing work. This is a function that is run once at the beginning of a Processing pro-

gram’s execution. So it’s just what we need for drawing a static image—but not what we

need for creating a moving image.

Now that we are looking to do something different, we’ll need to separate the tasks

that belong in setup() from those that belong in another function, draw(). This func-

tion is called (i.e., invoked) every frame. In Processing, the frame rate can be set using

the frameRate() function, which of course should usually be placed in the setup()

function. If it isn’t specified, the frame rate will be 60.

So, let’s get going on our moving-rectangle program. To begin, we can set the display

window size. Let’s be square again and make it 600 × 600:

void setup() {

 size(600, 600);

}

Try this out; you’ll see that a window of the appropriate size appears and that nothing

else happens. To amuse ourselves, let’s change the background color so it is a medium

gray instead of the default light gray:

void setup() {

 size(600, 600);

 background(127);

}

Because 127 is in the middle of the possible range of intensities, 0 through 255, this

is a medium value. However, whether it visually looks like the medium gray you are

268	 Chapter 14

expecting will depend on your operating system, display settings, and the display

itself.

Now, let’s draw our rectangle. Add this to the existing program, below setup():

void draw() {

 rect(0, 100, 100, 400);

}

If you run this, you’ll see a rectangle drawn on the left side. Actually, for as long as

the program is running, this rectangle is being drawn again and again, sixty times per

second. Furiously! But you might notice that your computer isn’t melting down; this

redrawing is actually a pretty routine graphics task.

Let’s get this rectangle moving! We need to change the x coordinate, the first argu-

ment. Initially, and actually always (as the program is now written), this value is 0.

That puts our rectangle right up against the left side of the window. Because we want to

move it along, we need to make 0 into 1, then 2, then 3; that is, we need to increment

the value that now simply remains 0.

Here’s how we can do it. Change the program so that it is as follows—leaving the

setup() function alone as it hasn’t changed:

int x = 0;

void setup() {

 size(600, 600);

 background(127);

}

void draw() {

 rect(x, 100, 100, 400);

 x = x + 1;

}

If you key this in and run it, you’ll see that it works, after a fashion. The rectangle

does move—but something weird is going on, and a large, black rectangular region is

being drawn as well.

Change the line x = x + 1; to x = x + 5; take a guess about what will happen now.

Then, try out the new program.

As you can see, the region behind the moving rectangle is no longer solid black.

What’s happening?

Image III	 269

The draw() function is correctly drawing the new rectangle each time. But it isn’t

clearing the window; it isn’t wiping out the previous instances of the rectangle. If we

want to do that, we need to do something along the lines of redrawing the background

each frame. Notice that we’re going to back to + 1 instead of + 5, and then change the

draw() function so that it is as follows:

void draw() {

 background(127);

 rect(x, 100, 100, 400);

 x = x + 1;

}

Now we have a rectangle taking flight across the screen. Let’s say we want this rectangle

to move three times slower than it does right now, even though its current speed is not

tremendous. How could we do it? We might think to try adding 0.33 instead of 1 to x,

but x is an integer. A better idea would be to change the frame rate. We’re now running

at 60 frames per second (the default), but we could set the frame rate to 20. Place the

following line anywhere in setup():

frameRate(20);

The glacial progress of our rectangle should show that this method works and that

it slows down our animation.

[Exercise 14-3]  Make a Shape Bounce

You’ve now made a rectangle move from the left side of the window across that win-

dow and off the right side. This is fine, but your rectangle is gone after it finishes

crossing the screen. What if you wanted this rectangle to bounce off the right side and

start moving left again? And then, after it did this, what if you wanted the rectangle to

bounce off the left side and start moving right again? Instead of just a transient rect-

angle, you would have a sort of metronome. Implement this never-ending bouncing

rectangle.

A hint: As you try to test this, you may find it very annoying if you start with a

slow-moving rectangle and a large window. A simple way to speed things up involves

increasing the frame rate.

Another hint: There’s another way to speed things up. We used it already when we

changed + 1 to + 5, which lengthens the steps that the rectangle takes. However,

this method of increasing the speed can interact with how you test to see when the

270	 Chapter 14

rectangle has arrived at the right edge. If you use equality to check whether x == 101,

for instance, this will work fine when you’re increasing x by one each time. But if you

are increasing x by five each time, starting with zero, your x will skip right over 101,

overshooting that value. You’ll do better to use an inequality, such as x > 100, to figure

out if your rectangle’s horizontal position has shifted to the right of where it should

be. The values 101 and 100 are examples; they aren’t the particular ones you will want

to use.

One final comment on changing the speed of the animation, and one that may not

be evident when you work with a very simple animation such as this one: if you change

the frame rate, you make a global change that speeds up or slows down everything that

is being animated. That can be fine, but once you get to more elaborate animations,

you may want to slow the movement of one element while leaving the rest of the ani-

mation the same. In this case, you’ll have to use a different method.

[14.4]  Changing Intensity

I’ll go through just one more animation trick in detail. After finishing the last exercise,

you have a system in which one variable moves from zero up to a certain limit, then

down again, and then up again, and so on. The variable corresponds to the horizontal

position of a rectangle. But we could change a value, and move it continually up and

down, to achieve a different effect.

To see how, let’s focus on the intensity of the rectangle. This is basically the mono-

chrome version of color. In our case, as I mentioned earlier, we have not 50 shades of

gray, but 256 shades. Let’s change the rectangle from 0 (black) a shade at a time up to

255 (white), and then back down, and so on. We can do this by adding a small bit of

code. First, at the top, let’s define a variable shade and another variable difference:

int shade = 0;

int difference = 1;

What we’ve done here is provide one label, or slot, that will hold the color. It’s 0

right now, but it will increase a step at a time to 255 and then decrease. The other vari-

able tells us what sort of step we’re going to take. Right now, difference is set to 1,

so the program will step from 0 to 1, from 1 to 2, and so on—but when we reach 255,

the program will need to start going back down. Then, difference will change to -1 to

enable this change in direction.

In the draw() function, after the call to background() and before the call to rect(),

add this code:

Image III	 271

 fill(shade);

 shade = shade + difference;

 if (shade == 255) {

 difference = -1;

 }

 if (shade == 0) {

 difference = 1;

 }

When the program reaches the point of maximum intensity (255), difference will

flip to −1. When it reaches the point of minimum intensity (0), it will flip back to 1.

Notice that this code will not particularly work if you change the amount of the step

because it’s checking for the shade to be exactly 255 or exactly 0.

Run the program and see how the animation looks. The effect, if not sublime, will

probably be at least interesting.

If you want to start experimenting with color, just add two more arguments to

fill(). Your arguments (as in Python) will represent the red, blue, and green color

values. For instance, to have the rectangle go from black to red and back without dis-

playing any green or blue, change the fill() line to:

fill(shade, 0, 0);

This method of oscillating between 0 and 255 is one way (and a fairly straightfor-

ward way) of generally moving a value from a lower bound to an upper bound. It will

probably be similar to the way you made your rectangles bounce back and forth.

[Exercise 14-4]  Multiple Moving Rectangles with Color

All right, keeping going. Add several other rectangles bouncing about (get some of

them moving vertically, too) and change their colors as they move. For this exercise,

add three to five rectangles by duplicating code you have written and modifying it.

[Exercise 14-5]  Fifty Moving Rectangles

For this exercise, you don’t need to worry about color. You can add color changes

after the core of the exercise is done if you must. You can also change the rectangles

to be of different sizes if you like—later. Initially, just get fifty similar-looking rect-

angles, each of them beginning at an independent location, to move. At the very

beginning of this process, have them just move off the screen horizontally, as was

272	 Chapter 14

done in the original animation example. Then see if you can get them to bounce back

and forth.

As you can imagine from the previous exercise, it is possible to do this fifty-rectangle

exercise by just hard-coding fifty different rectangles: copying code, pasting it in fifty

times, and modifying each snippet of code. But don’t do that—it helps no one! Instead,

use an array (which in Processing is similar to a Python list). Set each of the fifty val-

ues in the array to represent the position of a different rectangle. (You can use ran-

domness, or pseudo-randomness, to do so. Check the Processing reference pages for

information on this.) Move each value so that the rectangles move. After you have

them all in motion, see if you can move them according to a particular current dif-

ference or direction for that rectangle. Perhaps you need another array of fifty values

for this?

If this exercise is rewarding, you can continue to get the rectangles moving at dif-

ferent speeds.

[14.5]  Exploring Animation Further

There are numerous examples of animation provided in Processing and made very

easily accessible to you, via the File > Examples menu item. If you need to review the

basics of how setup() and draw() are used to animate, for instance, there’s Basics >

Structure > SetupDraw. Some of these examples are illustrating more advanced facilities

of Processing, but by this point in the book you should be able to locate ones that you

find compelling. You can then study the code, not only by reading it and seeing what

it does when run, but also by modifying it to explore how it works.

[Free Project 14-2]  Parametric Geometric Designs

Do this once for each Free Project 14-1, Recreate Geometric Designs, that you com-

pleted. For the first free project, you made your own sketch of a geometric design. In

this free project, you will parameterize your design. That is, you’ll make it dependent

on values that you can change. Two parameters are required; as the “free” part of this

project, you should add other parameters yourself that suit the design you developed.

To begin, add the parameters (variables) height and width, representing variation in

the two dimensions of the design. These should be floating-point values, with 1 mean-

ing no variation, 1.5 being a “stretch” of 150 percent in that direction, and .6 being

a rescaling to 60 percent, compressing the design in that direction. For instance, if

height is set to 1.2 and width to 1.5, the design will be enlarged, with the height being

120 percent of what it originally was and the width being 150 percent. As a result, the

Image III	 273

aspect ratio will change. This isn’t supposed to be the most exciting change. It’s meant

to prepare you to determine at least two additional parameters.

The additional parameters you add will depend on the nature of your design. If you

have a rectangular design, you may wish to allow it to skew to the left and right based

on a parameter. If you produced a flower with eight evenly spaced petals, you may

wish to parameterize the number of petals. Would your parameter be a floating-point

value or an integer in this case? You’ll need to figure such things out. Beyond the two

parameters controlling how the height and width of the design will be rescaled, add at

least one more thoughtfully selected parameter that suits your design.

[Free Project 14-3]  Novel Clocks

Do this project at least three (3) times. For this project, create working displays of the

time using Processing. The time can be displayed any way you want, but the display

should somehow change every second. You should consider ways of displaying the

time that are interesting—conceptually, visually, or practically—to you. If you often

talk with someone in another time zone, can you create a working clock that displays

the time in both places? If you use a twenty-four-hour clock of some sort, can you dis-

play the time in a similar way? Can you have one of your clocks imitate the cycle of day

and night? Does the radial display of time (as in a typical analog clock) appeal to you,

or do you prefer a digital display, or perhaps an unusual watch face of the sort of you

see on a binary watch? You should have some ideas in mind as you start to develop a

clock of your own, but you should also be able to follow new avenues that you discover

while you program. Be sure that however unusual the clocks you develop, the time can

still be read from them—at least by you.

An analog-style clock is one of the examples provided with Processing: Basics >

Input > Clock. If you like, you can start with this—but even if you find some nice

ways to modify this, starting with this code might predispose you to producing a more

conservative and traditional clock. Remember that even if you have the impulse to

start from nothing and code this project, you can use this example or other code as a

starting point and as something to think about. And even if you feel more inclined to

begin tweaking the example, you do have the ability to start from a blank window and

develop your own code. If you choose to modify the example, a good way to proceed

involves stripping out various sorts of complexity and trying to understand each of

these as you do so. Then you can build the example back up in your own way.

One of the nice things about this clock project is that your program must deal with

data—the current time. You can’t just draw a square and be done with it; you have to

consider how your graphics will work in motion and at any point in the day. However,

274	 Chapter 14

this project doesn’t involve accepting input from the user, so that complexity (as inter-

esting as it is) is factored out. There’s no need right now to deal with user input to

create an interesting software machine that displays the time. Interactivity is a topic,

instead, for the next section.

[14.6]  Interactive Programs

A curious feature of the programs you have typed in, or written yourself, is that—if you

have been following directions and have been keeping to the exercises and free proj-

ects listed—they are noninteractive. Of course, you can interact with them at a certain

level by changing the code; your Python interpreter, Processing IDE, and text editor are

interactive programs, and they allow you to change the text files that constitute other

programs, and then you can run these programs again. But the programs themselves

do not accept input from the user during execution and thus they are not interactive.

I discuss here some simple ways to begin accepting and processing user input. We’ll

get on to developing some interactive sketches in Processing, but interactive programs

can be written in all sorts of programming languages, so we’ll digress from visual design

for a moment to demonstrate that. Let’s return to Python (and our Jupyter Notebook)

for a moment.

You can request input from a user, and assign what is typed into a variable, quite

easily in Python:

name = input('Please provide your name:')

print('Hello, ' + name + '!')↵

Try this out. You can take this code and place it in a text file ending with “.py” if you

like so that it can be run from the command line. Jupyter Notebook suffices to show

you how it works, though.

[Free Project 14-4]  Conversation Starters

Do this project at least three (3) times. Develop some Python code of your own that

similarly requests input. See if you can modify this “Hello NAME!” example into some-

thing a bit more interesting than this (rather insipid) greeting. You can request any

typed input from the user, and rather than just printing a fixed text with a slot in it,

you can generate a reply in the way you did with your random text generator (based

on “Stochastic Texts”) or by transforming the input. Think of this as a sort of degener-

ate bot or chatterbot, in the style of Eliza/Doctor and many interesting modern-day

systems, that only speaks for one turn of conversation.

Image III	 275

If you like, of course, you can extend the conversation for any number of turns—

you can even develop a program that conducts a conversation of unbounded length,

using an infinite loop. But for this project, start with a single reply.

[14.7]  Key Presses in Processing

In standard Python, it’s a bit tricky to actually register key presses, as opposed to asking

for input and having someone type something followed by pressing Enter. Processing,

on the other hand, is easily able to deal with keyboard input as each key is pressed. Just

as there is a special setup() function and another one, draw(), Processing provides a

special keyPressed() function that is called every time a key press is detected. What

was typed is then available via the local variable keyCode.

What follows is the longest program in the book. Still, it is a fairly simple program

and is a feature-complete generated landscape, presenting a forest with overlapping,

circular canopies, seen from above. I have placed this program on my website for you at

nickm.com/code/forest.pde, and you are welcome to copy it from there. It wouldn’t

be a bad idea to type it in, however, to continue getting a feel for programming. If

you do so, remember that you don’t need to type in the comments that begin with

//—although it’s fine to include them.

int dx = 0; // horizontal distance from the center

int dy = 0; // vertical distance from the center

int num = 100;

int[] treex = new int[num]; // there are 100 "trees" (circles)

int[] treey = new int[num]; // these store their x,y coords

int[] treesize = new int[num]; // diameter for each tree

int[] treealpha = new int[num]; // transparency for each

void setup() {

 size(500,500);

 // fill the position, size, and transparency arrays

 for (int i = 0; i < num; i = i + 1) {

 treex[i] = (int) random(width * 2);

 treey[i] = (int) random(height * 2);

 treesize[i] = (int) random((width + height) / 8);

http://nickm.com/code/forest.pde

276	 Chapter 14

 treealpha[i] = (int) random(128);

 }

}

void draw() {

 background(255); // white background

 // move the canvas by the current dx, dy amount

 translate(dx - (int) (width / 2), dy - (int) (height / 2));

 for (int i = 0; i < 100; i = i + 1) { // go through all 100 elements

 fill(0, 0, 0, treealpha[i]); // black, transparent interior

 stroke(0, 0, 0, treealpha[i]); // so is the outline

 ellipse(treex[i],treey[i],treesize[i],treesize[i]);

 }

}

void keyPressed() { // have arrow keys change dx, dy

 if (key == CODED) {

 if (keyCode == DOWN) {

 dy = dy - (int) (height / 10);

 }

 if (keyCode == UP) {

 dy = dy + (int) (height / 10);

 }

 if (keyCode == RIGHT) {

 dx = dx - (int) (width / 10);

 }

 if (keyCode == LEFT) {

 dx = dx + (int) (width / 10);

 }

 }

}

Image III	 277

This program generates a different abstract forest each time it is run. The view is

initially in the center of the forest (seen from above), but by using the arrow keys,

whoever is running the program can navigate around. Randomness (or the computer’s

approximation thereof) is used at the beginning, to determine the location, size, and

transparency of each tree. After that there is nothing random about how the program

works. When the arrow keys are pressed to change the view and then change it back to

what it was before, the exact same thing will be shown. This landscape is generated in

the same way the text from our random text generator was. We didn’t manually place

the trees at fixed locations but wrote a program to do that, in this case using Process-

ing’s random() function. It is navigable because of how the arrow keys allow us to see

more than the initial view.

[Free Project 14-5]  Create a Navigable Generated Landscape

Do this project at least (2) times. It’s fine if one is a modification of my code. Write

something from scratch as well. Use the previous code as a starting point and

develop some modified code from it. Initially, it may help to proceed incremen-

tally by changing the code, better understanding it, and adding one element at

a time. For instance, it’s possible to change the controls. As a first step, you could

allow WASD-style navigation instead of (or in addition to) navigation with the arrow

keys. Implementing this will allow you to see how keyCode works. You can also use

a mouse or trackpad as an interface. See mouseX and mouseY in the Processing refer-

ence, to begin with. You detect interface events such as dragging with the mouse,

too. A good starting point for this would be mouseDragged() in the Processing

reference.

After you are familiar with how this code works, develop your own unique and

systematic virtual, navigable space. This means simulating a space that is larger than

the Processing window. You can choose how that is done; your program doesn’t have

to use the top-down view provided in this example. It also means developing a con-

trol scheme, which doesn’t have to be based on the arrow keys (or, for that matter,

mouse dragging). Finally, it means generating the landscape using code. Your landscape

doesn’t have to be random: a highly regular cityscape or cemetery or quincunx would

be fine as well and can be accomplished with iteration. But if you have a list of points

and are just asking the program to connect the dots, you aren’t generating a landscape;

your program is just serving as a plotter for prespecified data.

Because you have this sample code, you can use it as a scaffold, even if you

plan on replacing all of it in your finished project. Some major components here

are the interface, the generation of a landscape, and having only a portion of that

278	 Chapter 14

landscape shown. Don’t try to completely rewrite all three at once. Instead, change

one of the aspects and use the provided code to help you see that your change is

working well.

This free project puts together the new topic of interactivity with some generation

ideas we dealt with earlier from the standpoint of language. It also offers a chance to

deal with windowing (in the most general sense) and keeping track of things that are

out of view, for now, but which may be displayed later.

Processing allows you to easily create a sketch that you can show in class or pre-

sent in exhibit. However, it is no longer easy to share Processing work on the Web

because of security issues with the whole concept of Java applets and running Java

within the browser. To easily share Processing work on the Web, you can write code

in a system called P5.js. The P5.js project, which has its home page at p5js.org, was

founded is and led by Lauren McCarthy. It is a JavaScript framework that provides

Processing-style functions within JavaScript programs. There are a few additional com-

plexities to using P5.js, so I focused our work in this book on good old Processing

and today’s version 3 of it. But many of those who learn from this book will probably

want to combine their knowledge of JavaScript and HTML pages (e.g., from 3.3, Quick

and Easy Modifications) with what they know about Processing and learn to work

in P5.js.

[14.8]  Essential Concepts

[Concept 14-1]  Abstractions Facilitate Visual Design

Programming languages provide ways to process images that in some ways relate to

the computer’s underlying image representation (amounts of red, green, and blue that

are between 0 and 255) and in some ways relate to higher-level design thinking (being

able to specify red as a color and draw lines and shapes, rather than turning on and off

individual pixels). Understand that there is usually some balance between these and

that useful abstractions will help designers and artists accomplish visual work.

[Concept 14-2]  Drawing in Time Produces Animation

The contents of draw() allow for animation to happen as different things are drawn

on different frames. The function has to be written, somehow, so that what is drawn

changes from frame to frame. This can happen by saving state in a variable and incre-

menting or otherwise changing it, or it can happen by introducing a dependence on

time or user input.

http://p5js.org

Image III	 279

[Concept 14-3]  Interactivity Is Accepting and Responding to Input

Understand the basic ways to take input from the keyboard in Python and Processing

and how input can either be accepted in a “turn-based” way, as when a name or other

string is provided, or a “real-time” way, as when input controls a dynamic animation

or allows one to navigate around a space.

[Concept 14-4]  A Window Looks onto a Virtual Space

Input can be used to move a window around and view different parts of a virtual space.

To do this requires a model of the larger space that is not directly seen. Understand the

principle here and its applicability to areas of a Web page or word processor document

that are viewed by using scroll bars to move vertically and horizontally.

[15]  Text III: Advanced Text Processing

[15.1]

This chapter covers some more sophisticated types of text processing, both the human-

istic (analytical) and artistic (generative) types.

The first consideration is, once again, the seemingly simple but actually rather tricky

problem of counting words. This time, word counting is done using TextBlob. The dis-

cussion then covers how to gather word-based statistics (such as average word length)

and how to count words of certain types, accomplished with a very reliable type of

complex natural language processing software, a part-of-speech tagger. (As with all such

systems, it works best in processing the specific types of data used to develop it.) Seg-

menting a document into sentences is then covered.

After these text-analysis methods, the discussion continues with some ways to use

simple word lists and an excellent handcrafted lexical resource, WordNet. The last

part of the chapter deals with language generation, which was a very early topic, first

encountered in chapter 3, “Modifying a Program.” The advanced discussion of lan-

guage generation covers how to develop “cut-up” texts, how to define grammars for

generation, and how language generation can be recursive.

These are only a few directions in which to begin to explore text processing, but

they are representative of different capabilities and approaches. This book doesn’t dip

into how to relate lexical (written) language to phonetic (spoken and heard) language,

although there are plenty of ways you can do that as a programmer. To go beyond our

topics here in terms of analysis, chunking text, parsing it using dependency or tree

parsers, and recognizing named entities are a few of the other interesting topics in

natural language understanding. Readers should be well-prepared to explore those after

this chapter. There are many other possibilities for creative text generation as well, of

course.

282	 Chapter 15

[15.2]  Words and Sentences

When we speak of words to discuss something such as the number of words in a text,

there are at least two things we might mean. Consider this well-known text, the first

sentence of A Tale of Two Cities by Charles Dickens, available in approximately the

same form from Project Gutenberg:

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of

foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of

Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair,

we had everything before us, we had nothing before us, we were all going direct to Heaven,

we were all going direct the other way—in short, the period was so far like the present period,

that some of its noisiest authorities insisted on its being received, for good or for evil, in the

superlative degree of comparison only.

In the standard sense of a word count, it would be correct to say that this sentence

has 119 words. This is a view of words as tokens. There are 119 individual sequences of

letters, separated by whitespace and punctuation, laid out one after the other. But it

would also be correct to say that the sentence has fifty-eight words, if we are speaking

of unique words. This is the view of words as types. There are eleven occurrences of was

in this sentence, and so those occurrences account for one type and eleven tokens.

When people speak of a word count, they are usually taking a view of words as tokens.

In particular situations in which it may be unclear, as when one begins to discuss word

usage, frequency, and so on, explicitly using the terms types and tokens can be very

helpful.

In natural language processing, an important early step is dividing a text into words

(in the sense of tokens). It’s not just important for purposes of counting words and

making comparisons. If one is interested in assigning each word a part of speech or

in parsing sentences to determine their grammatical structure or in classifying text

according to the words used or in most any other type of language processing, it’s

necessary to first determine what the words are in the text. So some thought has been

given to this preliminary type of processing, this type of segmentation of a text. This

process is called, for reasons that should not surprise you, tokenization. The text is not

being divided into types, after all.

We have written code to segment texts into words already, but we can use a well-

developed method of tokenizing text by calling the built-in tokenizer that TextBlob

provides.

Fire up Jupyter Notebook. To get started, we’ll need to import the class we’re going

to use.

Text III	 283

from textblob import TextBlob↵

Then, we can create our first TextBlob, this time by just providing a short sentence as

an argument to the TextBlob() constructor:

gravity = TextBlob('A screaming comes across the sky.')↵

The variable gravity does not hold a string, even though we used a string to create the

value it does hold. This variable holds a TextBlob object, and we can call methods and

view attributes of such an object.

gravity.words↵

This is asking for the words attribute of gravity. Notice that the result is exactly the

same as if we had typed in:

TextBlob('A screaming comes across the sky.').words↵

This should no longer be a surprise, but still, it’s good to reassure yourself about how

things work now and then. The result that you get is a special kind of object, too—not

a list, but a WordList object. As with a TextBlob, you can do some additional things

with this object because it has methods and attributes that are not provided for lists.

However, you can also treat it like a list. Try, for instance:

len(gravity.words)↵

As well as:

gravity.words[:3]↵

And, try this one also:

sorted(gravity.words)↵

Now, you might complain that this attribute is, confusingly, called words when it could

have been called tokens, to let everyone know that it is word occurrences we are find-

ing. Try this:

gravity.tokens↵

You can see from this that the sentence has one more token than it does words (or

words viewed as tokens). The final piece of punctuation is included in the list of tokens.

So as an additional wrinkle, not only can words be thought of in terms of types or

tokens, but when a text is divided into tokens, these can include some tokens that are

not words.

You can see from the following example that words and punctuation are not sepa-

rated according to any of the lexical rules we discussed earlier:

284	 Chapter 15

TextBlob("Can't touch this.").tokens↵

Notice that this string begins with " and ends with ". I used double quotes specifically

so that it would be easy to include the apostrophe in Can't. Also, notice that the result

is, well, a bit unusual from a purely lexical standpoint. Does this have something to

do with the piece of punctuation in “Can’t”? It can’t, actually, as this example will

show you:

TextBlob('Cannot touch this.').tokens↵

The tokenizer that is being used here models words in yet another way. It’s a way

that is well-grounded, linguistically. But we shouldn’t expect it to match the word

count that a text editor or word processor does.

[15.3]  Adjective Counting with Part-of-Speech Tagging

Let’s create a TextBlob with a slightly longer sentence for this next task, by typing all

of this on one line:

pride = TextBlob('It is a truth universally acknowledged, that a single man in
possession of a good fortune, must be in want of a wife.')↵

We’re looking for a way to identify the adjectives in this sentence (and any sentence)

so that we can count them. At this point, though, we do not need to determine the

grammatical structure of the sentence. We’re not going to draw one of those sentence

diagrams or determine which noun is the subject and which the object. We just want

to be able to tell which words are which part of speech. A system that can do this task

is a part-of-speech tagger, also called a POS tagger. Such systems are highly accurate, if the

text being tagged is similar to the text used to train the system. And there is a default

tagger (just as there is a default tokenizer) built into TextBlob.

pride.tags↵

As before, if you need to install an NLTK resource, just do exactly what it says there

in Jupyter Notebook and try this again. You are to type this in yourself and see what

results, but for purposes of discussion, here is what the beginning of the output should

look like:

[('It', 'PRP'),

 ('is', 'VBZ'),

. . . .

Text III	 285

Now, to figure out what exactly this data is, we can start by determining its type. See if

you can clearly state the type of this value. Hopefully, you can; in any case, continue

reading.

This is not a number (an integer or a floating-point number), and, although there

seem to be some strings in there, the whole thing is not a string. It begins with [and

ends with] and has several things delimited by commas. So at the highest level, we are

dealing with a type of data we are quite familiar with: a list.

So what is this a list of? It’s a list of things that begin with (and end with) and have

a comma in the middle. Those things are tuples, and specifically, pairs. And what are

they pairs of?

Things that begin with ' and end with ' and contain sequences of characters. These

are strings.

So, the type of pride.tags is: a list of pairs of strings.

You can see from that list that the first element, the first string, is in each case a word

from the text we provided, the first sentence of Pride and Prejudice. The second element,

the second string, is the part-of-speech tag.

These tags are based on the ones used to annotate the Brown Corpus, or, in full, the

Brown University Standard Corpus of Present-Day American English. This influential

linguistic resource was compiled in the 1960s and had about one million words in

many different genres. To label each token with a part of speech, eighty-seven tags were

developed.

The Penn Treebank project, which ran from 1989 to 1992, resulted in a corpus of

more than 4.5 million words that was annotated for syntactical structure. The tags used

for this project were from a reduced set; there were forty-eight, of which twelve were

used to label symbols that were not words. This tag set is the one used by both of the

taggers included in TextBlob.

You can pick out, just from this sentence, what several part-of-speech tags are. NN

means noun, IN means preposition, and it looks like JJ means adjective. So let’s count

the adjectives. How should we proceed, using the sorts of techniques that we’ve already

discussed?

The most straightforward way is to set a counter variable to 0 and iterate through

the list, adding one to the count each time an adjective is encountered:

count = 0

for (word, tag) in pride.tags:

 if tag == 'JJ':

 count = count + 1↵

286	 Chapter 15

Wrap that up in a function called adjs(), using your knowledge of how to write func-

tions. Where pride occurs, you’ll do well to replace that variable name with a generic

name for a TextBlob and then make that the argument to the function. You’ll want to

return the value of count.

Check out your function adjs() by taking a look at how many adjectives are in the

first sentence of Pride and Prejudice:

adjs(pride)↵

And, for good measure, check out how many your code counts in the first sentence of

Gravity’s Rainbow:

adjs(gravity)↵

Keep this session open with this function in memory, as we’ll make further use of

adjs() before too long.

[Figure 15-1]
Part-of-speech tagging associates tokens with grammatical categories. Notice that ’s is assigned its

own tag here, as it is a contracted form of is. Here, the categories indicated by tags are DT (deter-

miner), VBZ (third-person “be,” singular, present), JJ (adjective), and NN (noun, singular or mass).

Text III	 287

[15.4]  Sentence Counting with a Tokenizer

The tokenizer not only segments text into words and other symbols, but also into sen-

tences. If you try doing this with a very naïve method, such as splitting the text every

time you encounter a period, it may work on certain texts. But for others that contain

Mr. or Ms. or Dr.—or any other sorts of abbreviations ending in periods—it won’t work.

And if you have an ellipsis (. . .), the simplest sort of rule will split the text into three

sentences at that point.

Let’s load up the text from the Universal Declaration of Human Rights again, this

time in a TextBlob, with both sentences typed on a single line:

hr = TextBlob('All human beings are born free and equal in dignity and rights.
They are endowed with reason and conscience and should act towards one another in
a spirit of brotherhood.')↵

Now, as a follow-up to checking the words attribute, try checking the sentences attri-

bute, as follows:

hr.sentences↵

Again we have a list, and this time it’s a list of Sentence objects. As we’ve seen in other

cases, we can treat Sentence objects as if they are lists, for instance:

len(hr.sentences)↵

[15.5]  Comparing the Number of Adjectives

Now let’s load up two novels, one after the other, and see how many adjectives are in

each. We can normalize our result by determining the percentage of adjectives: the

number of adjectives we find divided by the number of words overall.

Let’s use Pride and Prejudice (1342-0.txt) and Moby-Dick (2701-0.txt), the plain-text

versions that are both easily available from Project Gutenberg. We’ll use the same

method as before to read in a file. As before, the files must be located in the same

directory where Jupyter Notebook is running. Because you have already prepared text

files, removing front matter and end matter from them, in exercise 13-1, Train and

Test on Ten Books, you should use those cleaned versions of the Project Gutenberg

files. In the example that follows, I use pride.txt to indicate such a file. In the first

line that follows, remember to add the argument encoding='utf-8' if you are using

Windows:

288	 Chapter 15

source = open('pride.txt')

pride = source.read()

source.close()↵

Now, do the same thing for Moby-Dick (also using a cleaned version of the file), placing

the text in variable moby. With that done, you have the full text of both novels assigned

to the variables pride and moby.

Check out the very beginning—the first hundred characters, for instance—of each

of these long strings. You can do this, of course, by taking a slice of these strings.

Next, create TextBlob objects:

prideblob = TextBlob(pride)↵

And the same thing for mobyblob, which will represent the TextBlob of Moby-Dick. At

this point, we’re ready to see how many adjectives there are. We just should invoke

adjs() with prideblob, and then mobyblob, as an argument. Go ahead.

Having done this, however, we should soon see that we really want to normalize

over the total number of words, to determine the ratio of adjectives to words overall. If

a book half as long had as half as many adjectives, that means the text is not different

but similar to whatever it is being compared to.

So we will want to divide the number of adjectives in, say, Moby-Dick by the total

number of words, which is the length of mobyblob.words. This, of course, is deter-

mined using len():

adjs(mobyblob) / len(mobyblob.words)↵

If you check this ratio for both texts, you’ll see that one text has a percentage of

adjectives that is almost one and a half that of the other. Does this mean much to you?

Does it indicate a difference in narrative style? At the very least, it shows that the ratio

of adjectives does indeed vary. If every novel had about the same percentage of adjec-

tives, it almost certainly wouldn’t be interesting to track and compare them. But future

work along these lines, embracing a larger corpus of novels, has the potential to show

interesting patterns, whether or not there is anything to be gained by comparing these

two particular novels in this way.

[15.6]  Word Lists and Beyond

An inflected word list contains not just the base forms of words, which you would find

listed in a dictionary, but also all the other surface forms of the word. In English, such

Text III	 289

a list will have plurals (children and houses as well as child and house), different conjuga-

tions of verbs (all the forms of be and all other regular and irregular verb forms of other

verbs), and comparatives (faster and fastest as well as fast). The Official Scrabble Player’s

Dictionary includes such a list, as all forms of English words are legitimate in Scrabble

play, although this dictionary only includes words of two to eight letters. Such lists are

typically used by spelling checkers because they cover all forms of words.

To return to our type/token distinction, the inflected word list can be seen as a list

of types (rather than tokens) that are not proper names and are found in English docu-

ments. Each one occurs only once, no matter how frequent or infrequent it is in the

corpus considered.

There is no neutral way to gather such a list. Whether it is harvested from Web

pages or assembled by hand with editorial care, decisions must be made. In the case in

which the list is built automatically, the decisions include which pages to use, which

to count as English (or whatever language is the focus), and whether documents of

other formats (such as PDF) will be used in addition to HTML pages. For instance, seo

may be identified as a common word in a corpus of Web documents, given that it is an

initialism that stands for search engine optimization. It would be difficult to argue that it

is somehow objectively in the top ten thousand words of English as it is used today in

speech, and it is unlikely to be a common word in a corpus of old public-domain books.

It is of course possible to assemble a set of Web pages such that an unusual term

like this, or essentially any word that occurs on the Web, is in the set of ten thousand

most frequent words. Take a single page that is less than ten thousand words long,

for instance, as your complete set of data: every word on that page is now in the top

ten thousand, according to the process you used. The top words always depend on

the corpus of text being used. If the pages one uses are out-of-copyright books from

Project Gutenberg, very recently coined terms will be unrepresented. The pages of a

giant online product catalog will have a different lexicon from a forum in which people

discuss rare diseases, and that forum will have a different lexicon from one in which

people discuss the ideal way to submissively serve drinks to one another.

While there is no inflected word list that is simply correct, such lists can still be a

help. I sometimes use an inflected word list in writing constrained poems, and even

though it lacks blog and mosh, it is very useful. In terms of the analysis of language, to

choose a very simple example, if you start with a word list that reflects a reasonable idea

of the standard English lexicon, you can see what percentage of words that people use

on different pages are not in this lexicon.

Here’s a quick project that illustrates the use of an inflected word list. We’ll seek redu-

plications in such a list. As introduced in exercise 8-7, Reduplications, a reduplication

290	 Chapter 15

of the strictest sort is a word that consists of two identical strings, one after the other.

For instance, tutu. Reduplications as we’re discussing them don’t have to be a single

syllable followed by the same syllable: hotshots counts, as it is a repetition of the string

hots. Notice that if we were using an uninflected word list, without plural forms, we

wouldn’t detect hotshots.

To start, you should locate or generate an English-inflected word list that is con-

tained in a text file, with one word per line. Search for and download such a list.

Save it to where you are working (the explore folder) and call it English_word_list.txt.

If searching for an inflected word list isn’t effective, try searching for a spell-check

dictionary. Or you can generate a suitable word list using a tool such as the one at

app.aspell.net/create. Open up the file and read it in:

source = open('English_word_list.txt')

words = source.read().split()

source.close()↵

There’s a little trick in the second line. source.read() reads everything in the file

into one giant string. But another method is applied after that: split(), which breaks

this giant string apart into individual words, splitting it on the whitespace (newlines,

in this case) and discarding all of that whitespace. That second line does the same thing

as words = source.read() followed by words = words.split(), but more concisely.

Now, check out the first few entries in the list:

words[:5]↵

Hopefully those look like the first five words in the file. Next and finally, we want to

go through the entire word list (iterate through it, as we’ve now done many times) and

check to see if the word we’re looking at is a reduplication. It’s a fairly simple process,

which can be tested in one line. Here is the skeleton of the three lines of code that are

needed:

for _____ in _____: # Iteration through the word list

 if _____: # Conditional testing to see if we have a reduplication

 print(____) # Only if we do, print the word↵

I’ve used print() in this example because we are testing out a short bit of code that

hasn’t yet even been made into a function—so there’s no way to return a value. Now

that you’re comfortable with the difference between returning a value and displaying

it, just try to develop some working print()-based code; later, it can be improved and

made into a proper function.

http://app.aspell.net/create

Text III	 291

Filling out the first line to do iteration shouldn’t be a problem. Filling out the last

line should be simple, too. So do those, then start to work on the second line. How can

you determine if a word has a first half that is the same as its second half? You should

refer to your answer to exercise 8-7, Reduplications, of course, but after you have devel-

oped a way to do this, consider my answer.

The expression I used is w[:len(w)//2] * 2 == w. This is one of several expressions

that will work. First off, I called the variable that was holding the individual words w.

You may have called it something else, such as word; it’s up to the programmer. Then, I

took a slice of w from the beginning up to the halfway point, which as a floating-point

number is len(w)/w. However, we need an integer to be used in slicing this string, so

we use integer division: len(w)//w. Then, I multiplied this string by 2. We’ve of course

seen that string multiplication is implemented in Python and that this is a legitimate

way to double a string, as in the function double(). So that gives us the left-hand

side of the equation: the first half of a string, doubled. For 'cowboy', this will give us

'cowcow', for instance. What remains is to check to see if this is the same as the word

itself. For 'cowboy' it isn’t, but for 'tutu' it will be.

There are plenty of other ways to check for reduplications. Addition could have

been used instead of multiplication. A string’s first half is always equal to its first half,

so really we could just check to see if it has a right half equal to its left half. And so on.

One thing that may seem odd is that in the program structure I outlined and in

my solution, I didn’t check to see whether the word has an odd or even number of

characters. A word with an odd length can’t be a reduplication as we have defined it;

shouldn’t we check to see if we have an odd-length word and only proceed if the word

is of even length? That’s a legitimate approach, but if the conditional is constructed

properly, it’s not necessary. When we take the first half of a seven-character word, using

w[:len(w)//2] or something like it, we get only three characters. When we double

those three characters and get a six-character string, there’s no way it will ever equal

the original seven-character string, so we won’t ever be mistaken.

You could possibly wind up with a comparison that doesn’t work, though. If you

decided to somehow compare the first len(w)//2 characters of a string with the last

len(w)//2 characters—this isn’t the easiest thing to do in Python, but it’s possible, of

course—and you didn’t check before or after to see that the string was of even length,

you might identify ingoing as a reduplication when it really isn’t one. That word has an

o in the middle and everything before it equal to everything after it. In this situation,

as in many situations, finding a simpler solution is best.

To understand more about standard vocabularies and their usage, you can use other

lists as well beyond the inflected word list that you found. If you want to recognize

292	 Chapter 15

the use of standard place names, for instance, you can use a gazetteer, a resource that

lists such names. Of course, looking for such names by simply matching strings is not

always straightforward: Providence could be the capital of Rhode Island or a divine qual-

ity, to say nothing of whether or not Intercourse refers to the town in Pennsylvania. But

so long as the limitations of such searching are kept in mind, researchers and artists can

make good use of such a list and other similar lists.

[15.7]  WordNet

WordNet is a pretty amazing resource—a free hyperdictionary and hyperthesaurus that

has been mainly used by researchers, but is in some ways has succeeded in the diction-

ary realm as Wikipedia has in the realm of the encyclopedia. The analogy shouldn’t

be overstated: WordNet is not a massively participatory project and is no replacement

for the historical and etymological information in, say, The Oxford English Dictionary.

It was created at Princeton University as a hierarchical (in many ways!) and carefully

curated project. WordNet is, however, a rich and powerful lexical database, it is free as

in free software, and at this point (having installed TextBlob) you have it installed on

your computer.

Typically we imagine that the core information in dictionaries consists of definitions

and that synonyms are the core information in a thesaurus. Actually, the thesaurus is a

much more radical book; what people often think of these days is the synonym finder

that is a thesaurus “in dictionary form.” Roget’s Thesaurus, published in 1852, actu-

ally consisted of a hierarchical categorization of concepts based on Leibniz’s philoso-

phy. Books of this sort are still published (Roget’s International Thesaurus, for instance),

and WordNet is among other things more a thesaurus in this sense than a synonym

finder.

There is good comprehensive documentation of WordNet online, and, speaking of

Wikipedia, the Wikipedia page is not a bad place to learn the different types of rela-

tionships that are modeled in WordNet. I’ll describe a few of these and why they are

interesting or complicated for artistic and humanistic programmers.

You can “manually” look up information about certain words in WordNet using the

online interface: wordnetweb.princeton.edu/perl/webwn.

This is a fine way to start learning the structure of WordNet. However, you don’t

have to be online to use WordNet; you can find the same information using the Python

interpreter, either by typing a line of code or by writing a program to use the database.

To investigate the synonyms that the word bank has, for instance:

http://wordnetweb.princeton.edu/perl/webwn

Text III	 293

from textblob import Word

bank_word = Word('bank')

bank_word.synsets↵

What you see there isn’t a list of synonyms, but a list (a long one) of synsets, sets of

synonyms that each pertain to a different sense.

If you start with most common words, you’ll need to distinguish the sense of that

word that is intended. There are ten senses of the noun bank. The first two are enough

to provide a classic example of polysemy. The first (according to the definitions that you

can see using bank_words.definitions) is “sloping land (especially the slope beside

a body of water),” and the second is “a financial institution that accepts deposits and

channels the money into lending activities.” When you select a particular sense, you

are also choosing a synset, a set of particular words or phrases (called lemma names)

that for most all practical purposes mean the same thing and relate to the specific

sense. The first sense of bank is in the synset containing simply the lemma name bank,

while the second is in the synset containing depository financial institution, bank, bank-

ing concern, and banking company.

bank1 = bank_word.synsets[0]

bank1.lemma_names()↵

bank_word.synsets[1].lemma_names()↵

If I had wanted to do all of this consistently, I would have assigned bank_word.
synsets[1] to the variable bank2 and then checked to determine the value returned by

bank2.lemma_names(). The same thing can be done either way, and here I’ve done it

both of these ways to show that both are possible.

While these two sets of words and phrases happen to be different, in general the

lemma names are not enough, by themselves, to disambiguate what sense of a word is

being indicated. Sense 3 of bank, “a long ridge or pile,” has a synset with just the lemma

name bank in it, just like the synset for the first sense. So if you want to know if two

synsets are the same, you should check to see if the two Synset objects are equal, not if

they have the same lemma names as returned by their lemma_name() methods.

bank3 = bank_word.synsets[2]

bank3.lemma_names()

bank1.lemma_names() == bank3.lemma_names()↵

bank1 == bank3↵

294	 Chapter 15

By the way, earlier we got a long list of synsets that contained both noun synsets

(such as 'bank.n.01') and verb synsets ('bank.v.01' and so on). That makes sense,

as there is a noun bank and a verb bank. But we probably want to restrict our results to

the appropriate part of speech. To do that properly, we should import a special con-

stant that indicates a noun. Then, that constant can be used with the get_synsets()

method to obtain just the synsets we’re interested in:

from textblob.wordnet import NOUN

bank_word.get_synsets(NOUN)↵

You can probably guess how to get just the verb synsets of a particular Word object. Give

it a try and see if you’re right.

Having understood the basics of synsets, let’s look at one type of WordNet relation-

ship that isn’t explicitly found in most dictionaries or other reference books. This is a

relationship of generality and specificity. Sedan is one particular more specific term for

a car, while motor vehicle is a more general term. Let’s find the appropriate sense of car

and then use WordNet to determine all the terms at the next level of specificity and the

one term at the next level of generality:

car_word = Word('car')

car_word.get_synsets(NOUN)↵

Synsets are ordered by how common each sense is, so we can expect that the auto-

motive sense (as opposed to, say, the use of the term to indicate a chariot) will be early

in the list. It is, indeed, first:

car1 = car_word.get_synsets(NOUN)[0]

car1.definition()↵

So, with the right synset easily labeled as car1, we can check to see what is one level of

generality up from car in the automotive sense:

car1.hypernyms()↵

car1.hypernyms()[0]↵

car1.hypernyms()[0].lemma_names()↵

The lemma names for this word are motor vehicle and automotive vehicle, which both

sound like reasonable terms to encompass car and similar entities. To see what is one

level of specificity down from car, try the following:

car1.hyponyms()↵

Text III	 295

You can see that there’s a synset named sedan in there along with many others. One

of the interesting things that WordNet can assist with is changing a text to be more

general or more specific. You can also see how close or far away two different nouns are,

using the path_similarity() method:

river = Word('river').get_synsets(NOUN)[0]↵

Here I have just grabbed the first sense of the noun river. I intend what I think is the

most com-mon sense, but I had better check to make sure it is really the sense I intend:

river.definition()↵

enigma = Word('enigma').get_synsets(NOUN)[0]

enigma.definition()↵

river.path_similarity(enigma)↵

river.path_similarity(bank1)↵

So, according to WordNet, a river is more similar to a bank (in the first sense of that

word) than it is to an enigma. That, at least, seems right. To be sure you understand

how this works, you should also check how similar an enigma is to a bank (sense 1) and

how similar a car (sense 1) is to these three senses of words.

Because of how synsets are listed, you can often grab the first sense of a word and be

right about your guess. However, WordNet’s path_similarity() method doesn’t com-

pute the distance between two tokens in the text you are analyzing. It determines how

similar two senses of words are. Consider what would happen if you wrote a program

that happened to choose the token car when it refers, in the text, to a cable car or a

train’s dining car. If your program proceeded to grab the first sense of car and selected

a hypernym to find a more general term, and it then proceeded to use the first lemma

name, you would end up with motor vehicle, which is not what a cable car or dining

car are.

WordNet is an excellent resource, and this quick introduction just points the way

to the many facilities it offers. It’s important to remember that while it offers a richly

interconnected database of the different senses of English words, it doesn’t determine

for you what the words in your text mean.

[Free Project 15-1]  Creative Conflation

Do this project at least two (2) times. Develop a program in the vein of Alice’s Adven-

tures in the Whale, discussed in 9.4, Finding the Percentage of Quoted Text. Your pro-

gram should somehow conflate two novels or other prose books. Obtaining these from

296	 Chapter 15

Project Gutenberg will probably be easiest and will mean that the format of the two

books will be similar. Although you can do a conflation using only the techniques

discussed in chapter 9, “Text II: Regular Expressions,” here you are to join your under-

standing of regular expressions to the capabilities provided by the TextBlob library. You

can replace text from one book with that of another, if you like, or you can interleave

text from the two books. Using TextBlob, you might make fine-grained replacements—

for instance, taking the adjectives you find in one book for use in another. There are

other many methods as well: be creative as you conflate!

[15.8]  Automated Cut-Ups

In “In the Cut-Up Method of Brion Gysin,” William S. Burroughs described how to

create a new text by literally cutting a sheet of paper and rearranging the pieces (Bur-

roughs 2003). The idea was not original to him or Gysin; Burroughs points back to

Tristan Tzara, a surrealist, but there are many earlier examples. One poetic tradition of

cutting up and rearranging text is that of composing a cento (the word means patch-

work), which has been around for centuries.

With some programming background, you can learn to cut up a text in new, surpris-

ing, and compelling ways. What I am going to discuss here is how to take a text that

is already “choppy,” or segmented into different phrases, and shuffle these around to

explore how the ordering of the phrases matters in the original work—and to make a

new work, which may or may not be interesting on its own. You don’t have to use the

cut-up method in this way. When cutting into paper, you can cut through individual

words and letters if you like and make a collage that is difficult to read. But to begin I’ll

explain how to create this more conservative type of cut-up automatically, using a little

bit of Python programming.

As a first example, we’ll start with the second part of Gerald Manley Hopkins’s poem

“Pied Beauty”:

All things counter, original, spare, strange;

Whatever is fickle, freckled (who knows how?)

With swift, slow; sweet, sour; adazzle, dim;

He fathers-forth whose beauty is past change:

Praise him.

Let’s represent the different things Hopkins mentions in a Python list—specifically, a

list of strings:

things = ['counter', 'original', 'spare', 'strange', 'fickle', 'freckled',
'swift', 'slow', 'sweet', 'sour', 'adazzle', 'dim']↵

Text III	 297

We can represent the five lines of verse, with slots ready to receive these words, by writ-

ing a function that accepts a list of words and returns the verse. Now that we’re nearing

the end of the book, I am going to assume you have a feel for typing in code and don’t

need to type in a large awkward block of code for the sake of practice. So, don’t type in

the following first attempt at a function to piece those words back together into Hop-

kins’s verse. I will leave off the ↵; I did the typing for you, so you don’t need to suffer.

def pied(words):

 verse = (

 'All things ' + words[0] + ', ' + words[1] + ', ' + words[2] +

 ', ' + words[3] + '; ' + '\n' +

 ' Whatever is ' + words[4] + ', ' + words[5] +

 ' (who knows how?)\n' +

 ' With ' + words[6] + ', ' + words[7] + '; ' +

 words[8] + ', ' + words[9] + '; ' + words[10] + ', ' +

 words[11] + ';\n' +

 'He fathers-forth whose beauty is past change:\n' +

 '

print(pied(things))

This actually works, if exactly this text gets typed in, but it’s pretty much a brute-force

approach to putting twelve words back into some lines of verse. Each word in the list

gets placed back according to its number. There are many, many opportunities to make

mistakes in this messy block of code. So here’s a different approach. This time, you

should type in the code that follows, as usual, although you are allowed (and encour-

aged) to copy the lines of the poem from an online source and replace the “things” with

underscore (_) characters. That is, go and find the text starting with “All things . . .” and

ending with “Praise him.” and go ahead and place it between the beginning """ and

the ending """. Then, edit that text to change words to slots.

def beauty(words):↵

 from re import sub↵

 verse = """All things _, _, _, _;↵

 Whatever is _, _ (who knows how?)↵

 With _, _; _, _; _, _;↵

298	 Chapter 15

He fathers-forth whose beauty is past change:↵

 Praise him."""↵

 for word in words:↵

 verse = sub('_', word, verse)↵

 return verse↵

print(beauty(things))↵

This is much easier to put together. It’s a bit shorter, for one thing: 316 characters as

opposed to 518. But it’s also more principled and there are fewer opportunities to make

line-by-line errors. This code uses iteration to go through the list words one at a time,

and each time it performs a simple regular expression substitution. However, once you

do actually type it in and run it, you’ll notice that this version doesn’t work. Try it and

see what sort of failure happens.

The issue here is that we want only one substitution to happen each time we go

through the loop, so that one _ gets replaced each time. However, our substitution

method is too eager. It replaces all of them the first time through so that there are no _

characters left and no other substitutions actually happen.

There is an easy fix for this. The sub() function accepts an optional fourth argument,

count, that limits how many substitutions will be made. For instance, if sub(text,
'sky', 'sea', 3) were used, then sky would be replaced by sea at most three times in

the string text. So, what argument do we need to add within the call to sub() in order

to fix our function? See if you can figure it out and get this function working.

After you’ve fixed the function, we need only do one more thing to get a Hopkins

cut-up: simply shuffle the words and pass the shuffled list as an argument.

from random import shuffle↵

shuffle(things)↵

print(beauty(things))↵

shuffle(things)↵

print(beauty(things))↵

I intended to have those last two lines repeated. This will let you see two different shuf-

flings of the catalog.

I must admit that it is very, very obvious to a careful reader that the words in Hop-

kins’s catalog are not arranged at random. Antonyms are placed before and after one

another, there are alliterative words, and the words are arranged with respect for how

Text III	 299

many syllables they have and for the lexical stress. These are some of the most obvi-

ous ways in which the poem (or at least, the part of it we are looking at) has been very

consciously designed and composed. You can of course just read these lines in the usual

way and figure out a lot about why the words are arranged as they are. So why put these

words into a blender?

The cut-up method provides another way to experimentally, practically see what

happens when the words are exchanged. You can see what you think is maintained

about the poem—is it anything?—and what changes. In this case, the changes are

many and significant, but are there aspects of sense that remain the same? You’ll have

to decide for yourself. This is a very miniature, toy example. You can try something

more interesting and extensive.

[Free Project 15-2]  Automate Your Own Cut-Up

Do this project at least two (2) times. Find a catalog text of some sort where the words,

phrases, lines, or other textual elements have been intentionally arranged for some

effect, such as a poetic or rhetorical one. Use an existing text for this project—not one

that you yourself have written. Some examples you may wish to consider, to use or to

help you identify other catalog writing:

•	 Christopher Smart’s lines about his cat Jeoffry, from Jubilate Agno, found among

other places at www.poetryfoundation.org/poems/45173

•	 “Who We Be” by rapper DMX, found in many places on the Web, including at

genius.com/Dmx-who-we-be-lyrics

•	 “VIA: 48 Dante Variations” by Caroline Bergval, which is intentionally organized,

although alphabetically; carolinebergvall.com/wp-content/uploads/2018/08/VIA.pdf

•	 “Girl” by Jamaica Kincaid, listing advice and instructions from a mother to her

daughter; newyorker.com/magazine/1978/06/26/girl

•	 “Matthew XXV:30” by Jorge Luis Borges, which begins (in one English translation),

“Stars, bread, libraries of East and West”; search for it online

After you have selected a text, take just the part of it that is “catalogic” and actu-

ally is listing things. Segment this text into pieces. This is another conservative cut-up

project, in which you will shuffle bits of text that have been cleanly divided from each

other. Place these pieces in a Python list. Use a similar technique as with the Hopkins

lines, and shuffle the elements, checking a few different outcomes. Are there ways in

which the shuffled versions maintain the poetics or rhetoric of the original version?

Does the shuffling help to point out why the original order is important, or if it isn’t?

http://www.poetryfoundation.org/poems/45173
http://genius.com/Dmx-who-we-be-lyrics
http://carolinebergvall.com/wp-content/uploads/2018/08/VIA.pdf
http://newyorker.com/magazine/1978/06/26/girl

300	 Chapter 15

[15.9]  Simple Grammars for Text Generation

While we’re interested in natural language here, the type of grammar we’ll be using in

this section is not a linguistic one, but a formal grammar. I will describe some ways to

clearly write (or type) such grammars as strings. But for now, let’s define what a formal

grammar is: it’s a set of production rules that describe how to produce strings and, spe-

cifically, all strings and only those strings that are valid in the syntax of a particular

formal language. I’ll use production (more of a formal language term) and generation

(more of a natural language generation term) interchangeably in this section because

they are directly connected in the way we’re using formal grammars.

You already have experience with formal languages because regular expressions

define formal languages of a certain type.

You also of course know how to use functions. Although it may not be the simplest

way to do it, functions, our familiar old friends, can be used to define a grammar. For

instance, consider a very simple language that only contains two strings: the words

right and wrong—nothing else. Those are our only two sentences in the language. This

function defines the grammar for this super-simple language:

from random import choice

def sentence():↵

 return choice(['right', 'wrong'])

Perhaps not the most thrilling language, but type this in and try out the sentence()

function to make sure you understand this very simple example.

Let’s elaborate this slightly. We want to also allow two more strings in our language,

rong because some people may find it funny to have a misspelled word here and way

wrong; things can’t be way right, but they can be either wrong or way wrong. We’ll

define this grammar so that structurally there is one option, at the top level, corre-

sponding to right, and one that branches off to the other three options:

def sentence():↵

 return choice(['right', wrong()])

def wrong():↵

 return choice(['rong', 'way wrong', 'wrong'])

I’m not claiming this is the ideal way to present this grammar, but it seems like one

reasonably clear way to do it. Try this one out as well and confirm that it will generate

all four strings in the newly expanded language.

Text III	 301

Here is one fairly simple way to type this grammar into a text file, rather than encod-

ing it in these two functions:

S -> 'right' | Wrong

Wrong -> 'rong' | 'way wrong' | 'wrong'

The first production rule is the starting point. (There is a standard convention by which

S actually stands for start rather than sentence.) This rule says we can do one of two

things; the | symbol is an “or” that means one of several branches can be taken. We

could proceed to the terminal token 'right': as the name suggests, that means we are

done with production; this particular rule has reached a final string. It is indeed a

string, with those feet marks (straight single quotation marks) that indicate a string

when used in Python. Or we could proceed to the nonterminal Wrong. In that case,

to continue with the generation of our string we (or the computer) will look through

the other rules and find one that applies. It’s not very hard to do in this case. The only

other rule is the one that applies. That rule says that Wrong produces one of these three

strings. They are all terminal tokens, so generation of text ceases after this point. Note

that there is no sort of formal problem with one nonterminal being called Wrong and

one of our terminals being 'wrong'; we might risk confusing ourselves or someone look-

ing at the grammar, but we won’t confuse the computer.

With that very simple example out of the way, let’s consider something that is still

very simple but features a twist. I’ll show you a similar sort of written-out grammar repre-

sentation first, and then we’ll consider how to encode the grammar as a set of functions:

S -> Sentence

Sentence -> "we" Aux Act Last

Aux -> "can" | "don’t" | "must" | "will" | "won’t"

Act -> "find" | "know" | "learn" | "read" | "say" | "see"

Last -> "it" | Sentence

Does this make sense? The first rule has only one possible production, the nonterminal

Sentence. (We could rewrite things to omit this rule, but as we will see in a bit, this

allows us to have S retain its special status as a start token.) The rule for Sentence says

that it consists of the terminal "we" followed by three nonterminals: Aux, Act, and Last.

There is no option, no or in this rule. The generation of text always proceeds by pro-

ducing that string and following the three rules corresponding to Aux, Act, and Last.

Aux and Act seem fairly similar; they are rules that produce one of a limited number

of strings. Every option is a terminal token. But Last is different: this rule could result

in the terminal "it"—but it could also continue generation by moving along to the

302	 Chapter 15

Sentence rule. That does something that you may find interesting: It produces another,

embedded sentence.

These are some of the strings that are in this language—that is, ones that are gener-

ated by this grammar:

we won’t say we will learn it

we must say we must know we can say we won’t learn we won’t learn we don’t learn it

we can find it

we will find we will find we can find we can say it

we don’t see we don’t know it

we won’t find it

we must find we don’t find we can find it

we won’t find we must read we will read we can know it

we will see we won’t learn we don’t learn it

we won’t learn we don’t find it

This is a recursive grammar. It uses recursion (covered first in 7.6, The Factorial and

again in 8.10, Verifying Palindromes with Iteration and Recursion) because sentences

can be part of sentences. And this isn’t just a complete absurdity: sentences can indeed

be part of sentences in English and in other natural languages.

Here’s a serious question you should think about and answer: What is the maximum

length of the sentences produced by this grammar? To answer it, you might think

about this question: In this formal language, what limits the length of a sentence?

What rule or set of rules? Or you could ask yourself, is there any sentence that could

not have been expanded further if a different choice had been made in generation?

I’m not going to offer a glib answer, or any answer, to this question in this book.

Instead, I’ll move along to showing how this grammar can be encoded in functions:

def sentence():

 return "we " + aux() + act() + last()

def aux():

 return choice(["can ", "don't ", "must ", "will ", "won't "])

def act():

 return choice(["find ", "know ", "learn ", "read ", "say ", "see "])

def last():

 phrase = choice(["it", sentence()])↵

Text III	 303

Get all of this typed in correctly and you will have defined a grammar. When you then

invoke the following line of code, what you are doing is basically using that first pro-

duction rule, S –> Sentence:

print(sentence())

When you do this, you should notice a problem. The computation keeps on going.

You can press the Stop button in Jupyter Notebook (to the right of the Run button) to

interrupt this process, or wait for the informative error message that will eventually be

produced.

This problem arises because in this line:

 phrase = choice(["it", sentence()])

Python calls sentence() before it makes the choice between these two elements. Then

this call to sentence() results in another call to sentence(), and so on, and so on . . .

There are a few ways to address this problem. I’m going to present the one I think is

fairly simple and clear, based on what has been covered in the book so far. I will rewrite

the last() function so that at the beginning it picks between “it” or the null string,

and only if the null string is selected will sentence() be called:

def last():

 phrase = choice(["it", ""])

 if not phrase:

 phrase = sentence()

 return phrase↵

Now see what this grammar generates by calling print(sentence()) many times.

Without giving away the answer to my earlier question, previous code lacked a base

case. If you need to, return to the earlier discussions of recursion to see what implica-

tions that has. There is a 50 percent probability that the function will call itself each

time, and that has certain implications, too.

By the way, this example is a Python version of a short, type-in computational poem

of mine that appeared first as a tiny Web page, with JavaScript, in Increment magazine,

increment.com/open-source/wont-you/. Now that you are near the end of the book,

you may wish to compare how things are done in JavaScript—the language used at the

very beginning of our involvement with code, in chapter 3, “Modifying a Program.”

A final note about generating text from grammars: There are existing systems you

may wish to use when you program grammar-based generators. The Natural Language

http://increment.com/open-source/wont-you/

304	 Chapter 15

Toolkit has facilities that allow for generating language starting with a grammar in

string form, such as:

grammar_string = """↵

 S -> 'right' | Wrong↵

 Wrong -> 'rong' | 'way wrong' | 'wrong'"""

After installing any NLTK resources you need, feel free to avail yourself of the

parse.generate module and the CFG object. More information on this can be found at

nltk.org/howto/generate.html. You can also use Kate Compton’s Tracery, a JavaScript

library for grammar-based text generation found at tracery.io. Tracery has been ported

to Python by Allison Parrish, so you can use the Python version if you like, too. Because

these are bonus options for generation with grammars, I’ll direct you to search online

for more information if you wish to pursue these particular methods.

[Free Project 15-3]  An Advanced Text Generator

Explore at least two options in significant depth, completing one project to your satis-

faction. Program a creative text generator using some sort of grammar-based technique.

You can use the cut-up technique as well, if you like, but in the previous free project

you were already asked to do a cut-up text generator, so for this project, integrate your

cut-up method with grammar-based generation if you go this route. In case they are

useful, here are two examples of fairly simple text generators that use grammars and

that are available in Python:

nickm.com/autopia/

nickm.com/memslam/random_sentences.html

You should study some of this code, and modify it, to explore how grammar-based

generators work. You may use NLTK or Tracery if you like, but you can also write a self-

contained generator like one of these two.

[15.10]  Essential Concepts

[Concept 15-1]  Even Words and Sentences Need to Be Defined

A simple concept such as “word count” can be defined in a variety of ways. A reason-

able way to determine words, sentences, and the parts of speech corresponding to par-

ticular words is using a library such as TextBlob, which is built on linguistic principles

and trained on corpora developed by computational linguists. Understand that even

state-of-the-art systems to segment text into sentences and tag parts of speech will not

http://nltk.org/howto/generate.html
http://tracery.io
http://nickm.com/autopia/
http://nickm.com/memslam/random_sentences.html

Text III	 305

work well on every text, however. Understand, too, how to access these linguistic tools

by incorporating TextBlob into your programs.

[Concept 15-2]  Lexical Resources Have Many Uses

From plain-text word lists to elaborate hierarchical systems such as WordNet, there are

a variety of lexical resources that can be accessed by programs. Some of the simplest

uses of these involve checking on an inflected word list to see if something is a dic-

tionary word and thus correctly spelled. With a more sophisticated resource, such as

WordNet, it’s possible to do deeper analysis and to generate rich, expressive language

that relates to a particular sense of a word. Be sure you understand how to have your

program traverse WordNet’s hierarchy and move through its senses as easily as you can

do so manually in the Web interface.

[Concept 15-3]  More Elaborate Rules Generate Interesting Texts

Beyond the very basic combinatorial generators explored early in this book, it is pos-

sible to transform a text (using a cut-up-inspired method, for instance) and generate

texts using a grammar. These are still fairly simple, understandable, and rule-based

ways of generating texts, but they offer many possibilities. Understand how to take

advantage of these methods. Specifically, develop an understanding of how a grammar

can recursively generate sentences, just as people can when putting language together

in speech and writing.

[16]  Sound, Bytes, and Bits

[16.1]

In this chapter, I will discuss, briefly and at a very low level, how computers produce

sounds and how low-level sound code can be written. This is an unusual discussion

of sound because it does not involve the higher-level ways the computer can produce

notes within a musical framework—by synthesis or sampling, for instance. Instead, I

consider how a stream of bytes, directed to an audio device, displaces a speaker to cause

those changes in air pressure that we hear as sound. While this will not leave a new

programmer with any sophisticated musical capabilities, it can help to very directly

ground an understanding of how computers produce sound. At the same time, because

there is a correspondence between continually output bytes and the sound waveform,

this discussion will connect the inner workings of the computer, at the byte and bit

level, with something we can perceive as listeners.

This is a short chapter, not because sound is simple or uninteresting but because it

is meant to introduce a refreshing new type of exploration at the end of this book and,

for classroom learners, at the end of a semester. You can explore this type of sound and

music quickly, and enjoyably, even if you are in a course in which you may be working

on a final project.

[16.2]  Introducing Bytebeat

To make this connection, I will focus on one very unusual, very esoteric way of pro-

ducing sound—and actually music as well—with a computer program: bytebeat sound

and music. I expect that very few readers of this book will actually go on to develop

a musical practice that employs this method. However, it’s really pretty easy to start

experimenting in this form, whether or not one has musical training.

308	 Chapter 16

In fact, while a few fundamentals of sound and computing are explained, one of the

fun and important things about this chapter is that it will offer you a chance to experi-

ment with bytebeat expressions in a way that doesn’t initially require understanding—

but can lead to understanding. This is not unlike the invitation to modify JavaScript,

even if is not initially intelligible, in chapter 3, “Modifying a Program.”

The essential rules and the technical setup for producing bytebeat music are as

follows:

•	 There is an audio device that accepts a sequence of bytes and produces sound, the

bytes defining the waveform that is produced.

•	 A program is written in which the value in the variable t is ever-increasing—like the

time.

•	 A function in this program accepts only t as an argument and produces a new byte

each time t is incremented.

•	 This function produces the sequence of bytes that is piped to the audio device, caus-

ing displacement of the speaker corresponding to each byte.

Practically, this means that you write something like (in Python) music(t), you have

an outer loop that starts t at 0 and keeps incrementing it, and the output of all of this

goes to something like what used to be called /dev/audio, an 8 KHz, 8-bit mono-audio

channel.

That is, a single channel (it’s monaural) that accepts bytes (it’s 8-bit) and, specifi-

cally, accepts about eight thousand of them each second (it’s 8 KHz, which means 8K

per second). That 8K, to be exact, is 8192.

At the core, all we need to do is write music(t) such that this function (each time

it is called) returns a byte.

Although bytebeat is quite low-level and related to the specifics of computers and

audio devices, you can also write bytebeat functions that will run in JavaScript and on

Web pages and can thus easily share them across platforms. Instead of going through

how to write and compile C programs to produce bytebeat music and how to emulate

an audio device of the appropriate sort and pipe the output to the device, I’ll invite you

to use one of these pages and to focus on the core code.

Here are bytebeat pages you can use:

greggman.com/downloads/examples/html5bytebeat/html5bytebeat.html

wurstcaptures.untergrund.net/music/

Because it is explicitly licensed as free software, I am allowed to make the first one of

these available on my website, and I’ve done that at nickm.com/bytebeat_by_greggman/.

http://greggman.com/downloads/examples/html5bytebeat/html5bytebeat.html
http://wurstcaptures.untergrund.net/music/
http://nickm.com/bytebeat_by_greggman/

Sound, Bytes, and Bits	 309

Gregg Tavares’s HTML5 Bytebeat will be available there in the unlikely event that one

or both of the above pages is unreachable at some point.

[16.3]  Bytebeat from Zero

Let’s begin by trying to generate some silence, to have the computer produce no sound,

even though it may already be doing that. Specifically, let’s just output 0 all the time.

Here is our expression that always outputs 0:

0

Play that and listen carefully, especially at the beginning and when you pause or inter-

rupt the program.

Now, try this one:

255

Again, listen carefully. Afterward, try:

127

Now, all three of these are generating very similar waveforms, and of course very

uninteresting ones. They are keeping the voltage levels constant and the cone of your

speaker at a constant position. But if you listen closely and have the volume far enough

up, you’ll hear clicks when 0 starts playing and stops playing and when 255 starts play-

ing and stops playing. However, I don’t hear clicks at the beginning and end of 127.

This is because the cone of the speaker doesn’t need to move from its rest position to

“output” a constant stream of 127s. But it needs to pop inward to get to the position cor-

responding to 0 and pop outward to get to the position corresponding to 255 and needs

to return to the 127 position afterward. Those movements each make a sound. The bytes

you are computing end up actually moving the speaker, to cause vibrations in the air

that can be heard as sound. Pretty neat, isn’t it? Of course, it’s not tremendously differ-

ent from bytes changing the intensity of a pixel, the light from which reaches your eye.

Let’s do something slightly more complex, but still rather simple. We’d like for our

bytes to start at 0 and increase to 255, then go back to 0 and increase to 255, and so on,

such that the value increases by 1 each tick of time. There’s an easy way to accomplish

this; we’ll just use the following function:

t

Now, t will grow in size, but it’s always being realized as a byte. So when t reaches

256, the byte that is generated will be 0, the next byte realized will be 1, and so on.

310	 Chapter 16

If you think about it (or if you try out HTML5 Bytebeat and examine the red line,

representing the waveform), you should be able to grasp that this is a sawtooth wave. It

produces a tone of a certain sort, not the most crisp one.

How could we raise the pitch of this tone? Here’s one way:

t * 2

As you can see visually in HTML5 Bytebeat, the sawtooth wave now has twice the slope

that it did before. The wave is at a steeper slope, pitched more steeply, and the sound,

too, is at a higher pitch. Try t * 3 and t * 4 to see (and hear) what happens.

There’s a question you can think about, answer, and then check, using a bytebeat

player. But first, a joke:

Two men, both of them mathematicians, are talking with one another at a restaurant. The first

claims that ordinary people do not know even the rudiments of calculus. “Here, I’ll show you,”

he says. “Let’s ask the server what the integral of ex is.” He summons the server and poses this

problem. Meanwhile, the other mathematician has been quickly jotting “IT’S e TO THE X”

on a napkin. He now carefully holds the napkin up, out of sight of the first mathematician.

“Hmm . . . ,” the server says, apparently deep in thought. “I think the answer is e to the X.”

The first mathematician appears quite flustered. The second mathematician, smiling, tells her

that she’s right. She then nods and adds, “plus a constant.”

You don’t need to remember calculus as well as this restaurant employee, or at all, in

order to add a constant in bytebeat and see what happens. What will happen if you add

a constant to one of these functions of t? Say, converting the t * 2 function into (t *
2) + 1000? How will the waveform and the sound differ in this case?

[16.4]  Exploring Bytebeat, Bit by Bit

Now, since we’ve multiplied t in order to increase the pitch, shouldn’t we divide in

order to decrease it? We certainly can. Try it out:

t / 2

t / 4

t / 8

At a low level (which is where most bytebeat musicians are focused), there is a way

to divide that is more suitable to byte manipulations and is computationally much

more efficient. Division is an extremely costly arithmetic operation, taking many pro-

cessor cycles. Most programmers don’t worry about that very much—and probably

shouldn’t in most cases—but those doing intensive audiovisual programming do. It is

Sound, Bytes, and Bits	 311

faster and more obvious to such programmers to use bitwise operators to accomplish

the same thing. So instead of dividing t by 2, an equivalent operation is shifting the

bits of t right by one bit. This right shift is the same thing as moving the decimal point,

as discussed in the tax example in 6.2, A Function Abstracts a Bunch of Code, except

this time it’s a binary point instead of a decimal point. Listen to this right shift:

t >> 1

I’ll describe what is happening, specifically, when t has the decimal value 140. To do

so it’s important to understand some essential aspects of binary numbers.

While decimal numbers have a ones place, a tens place, a hundreds place, and so

on, binary or base 2 numbers have a ones place, a twos place, a fours place, and so on.

So you can look at which digits are 1 (which of them are “flipped on”) and count up

the value of the number: 1100 in binary is, in our usual decimal system, 8 + 4 + 0 + 0 =

12, because the eights place and the fours place are “on” while the twos place and the

ones place is “off.”

So when t has the decimal value 140, the binary representation of t is as follows:

10001100

That’s 128 (the hundred-and-twenty-eights place is “on”) plus 1100, the number just

discussed. Shifting that over to the right by one gives:

01000110

Which is the binary representation of the decimal number 70. Each of the individual

values drops down by one place. That leading 1 represented 128 in the original num-

ber; it represents 64 in the new number. So every digit except the rightmost one moves

down, and (notice that 70 is half of 140) the number is divided in half. Whether that

rightmost digit is a 1 or a 0, it’s gone after this right-shift process.

Similarly, t >> 2 is division by 4 and t >> 3 is division by 8. If you want to see how

the >> operator works, try it out in Jupyter Notebook. >> is implemented as an operator

in Python, too. Check 256 >> 1 and 100 >> 1, for instance. If you want to hear how

different right-shifts sound, try them in a Web bytebeat player.

You may have guessed that the left shift operator, <<, also exists and does the equiva-

lent of multiplication. Give that a try, too.

Another nice bitwise operator is &. Before I describe what it does, just listen to it for

a moment:

t & 32

t & 64

312	 Chapter 16

t & 140

t & 255

You should recognize one of these from before because one of them just does the same

thing as t. Which one? You should also notice that (among other things) the height of

the waveform is capped by the number on the right. For instance, putting & 64 to the

right of t means the maximum value will be 64.

The operator & (bitwise and) sets a bit to 1 if both the operand on the left and the

operand on the right have a 1 in that position. So, t & 127 will effectively cut off the

highest-order bit from t, leaving everything else the same. As you should see, there are

other effects besides limiting the height of the waveform. Try out some different values

and listen to what those effects are.

I’ll invite you next to try this expression:

t * t

And then “slow down” or decrease the pitch of one of those two operands:

t * (t >> 3)

You should notice that you can use terms to do things similar to the conditional

statement. If you use (t & 128), this will be 1 half the time (when the high bit is set,

or on) and 0 the other half the time. What if you multiply by this term?

As a final particularly interesting example, I’ll describe one of the most famous, inde-

pendently discovered bytebeat expressions and sketch out how it works. This is the “42

melody” that is the default bytebeat expression in Gregg Tavares’s HTML5 Bytebeat player:

((t >> 10) & 42) * t

Instead of trying to explain it, I’ll discuss how you can explore it. We know from the

previous two short expressions that t * (t >> 3) is a slowed-down version of t * t.

If we wanted to slow this down even further, we could shift the bits right by 10 instead

of 3: t * (t >> 10). Listen to that one, and then note that this is just the famous 42

melody without the 42 part. Or, to be more specific, it lacks the & 42 part. So what is

that part of the expression doing?

To understand how it adds so much complexity to the sound that is being produced,

it’s very useful to take a look at the bits that make up this number, at what 42 is in

binary. You should find a programming calculator on the Web, or install or locate one

on your system, to convert easily between decimal and binary for the next phase of the

investigation. You can, of course, convert the number by doing the math yourself, but

it’s practical to use a computer for this purpose.

Sound, Bytes, and Bits	 313

In binary, the decimal number 42 is 101010. Let’s take just the two least significant

bits, 10, which in decimal are represented as 2. Now, listen to what a modified version

of the 42 melody, the 2 melody, sounds like:

((t >> 10) & 2) * t

It sounds like part of what is going on in the 42 melody, doesn’t it? Now check

the next bit that is “on,” the binary number corresponding to 1000. That number, in

decimal, is 8. Try & 8 instead of & 2 and listen to that one. Finally, convert 100000

to decimal to get 32 and try out & 32. You can also check your math at this point: 10

+ 1000 + 100000 binary is 101010, while 2 + 8 + 32 decimal is 42. You can also listen

to what it sounds like when you use the values 1010, 101000, and 100010, which are

combinations of two out of the three “on” bits, although I’ll leave it to you to convert

those numbers to decimal.

These brief discussions will hopefully be enough to invite your experimentation

and to show how bytebeat music can be a window into the lower-level workings of the

computer.

You should also go and find bytebeat expressions online, where they are available in

different contexts (sometimes included in explanatory videos). They are worth trying

out, and the ones that interest you are also worth modifying. You can remove parts

of expressions, change values, and determine how parts of each bytebeat expression

interact with others to produce sounds.

For a more extensive discussion by the inventor/discoverer of bytebeat music, you

can read a paper (Heikkilä 2011); there are also a variety of good resources and discus-

sions online.

[Free Project 16-1]  Bytebeat Songs

Do this project at least four (4) times. Develop a bytebeat expression that you find

pleasing for some reason. It does not even have to generate “music” in any conven-

tional sense. Try to explain what about the resulting sound you enjoy. Does it have a

beat that you like? High-level variation as time progresses? A melody? Harmony? Or

perhaps you mainly like the visual representation that appears and can just tolerate

the sound.

After you have developed one expression, develop another that does something else,

perhaps intensifying what you enjoyed in the first piece or perhaps involving explora-

tion of a different direction.

Beyond what you sought to do differently, do the sound pieces you developed have

significant things in common? Could you combine expressions and have them both

314	 Chapter 16

used to generate sound at once? How? Try it; figure out some means of combining your

“songs.”

[16.5]  Further Exploration of Sound

Bytebeat music is something of an anomaly in computer music, although a fun one. It

also sheds light on how computers work. Those who wish to continue exploring sound

can use one of several cross-platform systems for sound synthesis. Pure Data, which is

by Miller Puckette and was originally released in 1996, is a patch-based programming

language in which objects are visually linked together. Pure Data supports the develop-

ment of multimedia projects and is widely used. SuperCollider, originally released by

James McCartney in the same year, is one of these that is used extensively, including for

livecoding (programming in performance). Many other systems that are widely used

for livecoding music. FoxDot is one that uses SuperCollider for its sound synthesis but

allows performers to livecode in Python.

[16.6]  Essential Concepts

[Concept 16-1]  Arithmetic Can Be Done Bitwise

This work with sound offers a chance to understand operations on bytes and bits as dis-

tinct from the usual decimal arithmetic. Whether you end up having recourse to these

often, you should develop an improved understanding of how media are represented

digitally.

[Concept 16-2]  A Stream of Bytes Is a Waveform

The digital representation of sound in bytebeat music doesn’t take a form that relates

directly to standard musical notation, but it does relate directly to the material sound

system, the way the speaker moves. Understand this connection and be able to deter-

mine, for instance, how large of a file (of data—that is, bytes) you would need to pro-

duce five minutes of 8-bit, 8 KHz audio that is not generated or compressed.

[Concept 16-3]  Moving a Speaker Produces Sound

When a digital waveform of this sort is converted into magnetic force and used to move

the cone of a speaker, the bytes effect those waves in the air that can reach people as

sound.

[17]  Onward

[17.1]

It’s about time to take the training wheels off—but where are they? Even if we did pro-

ceed incrementally, covering fundamentals and starting from simple types of computa-

tion, I would submit that we have been doing real programming throughout.

You’ve been using Python, just like professional programmers do. It wasn’t running

in any sort of kiddie mode. You used Jupyter Notebook and also figured out how to

write a Python program in a text file and run it from that file.

You worked in Processing, which was created with programming education, among

other things, in mind. But Processing is used to create art, TV commercials, and

advanced visualizations for researchers. Processing has a simple but effective IDE, and

by using it, you’ve gained experience programming not only in an interpreter, not

only by editing a text file, but also by using one of these specialized interfaces—an

integrated development environment.

When you grabbed an HTML page with JavaScript in it from the Web, opened it in a

text editor, modified it, and ran it once more by opening the file in a Web browser, you

did something plenty of Web programmers have done, with their own code, collabora-

tors’ code, and code on the Web that is offered in example snippets or licensed as free

software. You picked this project up later in the book and had the chance to reflect on

having some distance from your first experience with it.

Of course, one can learn plenty more about programming. There’s more to learn

about programming in general, and about a language such as Python in particular,

and about tools such as debuggers, test frameworks, version control systems, and static

code checkers. And, conceptually, there’s more that can be learned about functional

programming, concepts like generics, object-oriented programming, and the different

sorts of complexity that programs can have in time and (storage) space.

316	 Chapter 17

But if you’ve been through this book, programming on your computer along with

the discussion, chapter by chapter—rather than just flipping to the end—you should

understand that you have indeed been programming and can continue doing so. The

activities in this book aren’t pretend programming or almost programming. Anyone

who has completed this book, or an abbreviated version of the work if that’s what fits

into a particular course, has programmed a computer.

Programming in this book was done in several languages, so you, the reader, didn’t

just “Learn Java in 17 Days” or gain narrow skills in some other particular language.

(You should be able to see, though, why it is possible for someone with programming

background to learn the essentials of a new language in a few days.) If you programmed

along with others in a group and showed your work to them, you no doubt saw how

your work can be surprising and meaningful to others who you respect. You pro-

grammed some interesting and provocative things, and in ways that can lead you, in

the future, to better think and inquire about topics that interest you.

I hope the programming you did helps show you why it matters to have access to

code and to have software freedom. Although some JavaScript online is obfuscated

either to minimize its size or to intentionally prevent its reuse, you couldn’t have modi-

fied JavaScript code without being able to find some of it online that is open to you.

You couldn’t have done the same work without being able (at least in an informal,

cultural way, for educational purposes) to do whatever you liked with this code. And

every system that we used in this book is free software. All of them can be used for any

purpose by anyone, and the workings of these systems are fully available for inspection

and modification.

A concrete case of this can be seen in WordNet, an English lexical resource that is

included in TextBlob. This resource is licensed for use by anyone—academics, indus-

trial researchers, artists, hobbyist programmers, whoever. This is great news for those

of us who speak and write English and who want to write programs that deal with

English-language texts. What about everyone else?

Fortunately, there are non-English WordNets. Unfortunately, some of them are not

free software. If you’re a member of the world’s largest language community, a speaker

of Mandarin Chinese, you are welcome to browse the Chinese WordNet online but

can’t download and use it in your programs. In German, there are two WordNet proj-

ects, one restricted and one open only for academic use (sorry, artists). In Spanish, there

is one WordNet project, focused on Iberian Spanish, and it too is payware. The effect

of a free software English-language WordNet and restricted systems in other languages

is to (further) advantage English, making it less likely that people will do computa-

tional linguistics work and creative computing work in other languages. It particularly

Onward	 317

suppresses exploratory programming work that isn’t done as part of funded research

projects that can pay for access to such resources. Is this the world we want?

I would guess that, closer to home, if you weren’t allowed to figure out a budget for

your household or your business because doing those calculations was restricted, you

would be troubled by this. So why, when it comes to being able to think and work as

an artist or humanist, would anyone settle for locked-down software—for not having

full control over their own work and thinking?

To start making the move to free software, you can start by not restricting yourself

to a proprietary language that is out of your control—something easy to do, because

the leading programming languages are free software. You can also start moving to

applications (for word processing, photo editing, and so on) that are free software and

developed by a community seeking mainly to empower themselves and others. Ideally,

then, a person who believes in intellectual and software freedom would move to a free

software operating system. This is an ideal that is within reach; there are plenty of us

who have done it.

Onward to thinking about your further development as a programmer. If you do

want to become a professional programmer, or a computer scientist—these are not the

same thing—there is certainly much more to learn in either case. It will no doubt be an

extensive project, although rewarding and, ultimately, possible.

If you want to bring computation to bear on questions that interest you—as an art-

ist, as a humanistic researcher, or as some other type of thinker with complex and seri-

ous questions to pose—you can do it; that goal is also within reach. There will surely be

more to learn in this case, too. You should understand that having determined a way

to explore and to extend your ability to inquire, you can accomplish this. You will need

to figure out how to prepare data and formulate useful questions that serve as a starting

point. As your projects become more elaborate, awareness of all those things that pro-

fessional programmers know about may become more important. You may certainly

wish to collaborate in different ways and, of course, have other programmers take a role

in your projects, perhaps working with you directly in collaborative coding situations.

At this point, though, you are prepared to sketch, brainstorm, and explore using pro-

gramming by yourself, when an idea strikes you, before anyone else is even involved.

You are ready to approach computation and the questions that matter to you not as

a manager unaware of how computing is done, but as a programmer. There is much

more to learn, indeed, but the computer should no longer seem a black box. Those who

have been through this book have implemented some of the underlying workings of

Photoshop; creatively conflated two books; built a text classifier; developed a gener-

ated, navigable landscape; and used computing to ask questions that no existing site

318	 Chapter 17

or premade download could have asked. If you have done this or significant portions

of it in a class, you have been able to augment your thought using computing. You can

build a model of the world—the literary, artistic, historical, material, culturally situated

world—and use it to inquire and create in new ways.

To continue your work as a programmer does not mean turning inward to discover

every technical detail of computing while neglecting people, culture, communication,

and art.

It can mean working with programming, and continuing to learn more about com-

puting, while turning newly learned computational abilities outward, onto the wide

world. It can mean seeing the world in a new way—asking new questions of it, ques-

tions that would be difficult or impossible to pose without computation. Questions

that can lead to powerful new creations and new insights.

Hello, world.

[Appendix A]  Why Program?

[A.1]

Using computation for inquiry is, unfortunately, not yet widely recognized as impor-

tant in the humanities. Programming on digital humanities projects is still often

considered a finishing stage, not a means of determining what to explore or how to

proceed. While readers of this book will usually already wish to learn to program, the

virtues of programming are not always clear to everyone.

Programming is not simply an implementation detail for interchangeable labor to

provide but is related to the methods humanists and artists use to model the world. In

all other fields that use computation significantly, including economics and biology,

researchers frequently sketch, explore, and frame the nature of their investigations by

writing programs. Understanding computation and having basic skills in programming

allows researchers to question, refine, overturn, or further develop existing data rep-

resentations, computational methods, and theories. I discuss cognitive, cultural, and

social rationales for programming and argue that the practice of exploratory program-

ming will be critical to innovation and revolution in the digital humanities—that it

should be taught at undergraduate and graduate levels and should be used early on in

research projects.

[A.2]  How People Benefit from Learning to Program

The book Digital_Humanities lists a variety of technical skills, rooted in text encod-

ing and in information technology project management, that are important to the

digital humanities. Although determining the appropriateness of scripting languages

is listed as important, being able to program is not mentioned. Similarly, Debates in

the Digital Humanities, a collection that features a section called “Teaching the Digital

320	 Appendix A

Humanities,” has nothing to say about whether programming should be taught. Typi-

cally when digital humanities (DH) pedagogy is discussed, the real topic is how to use

preconstructed DH systems to deliver education. Yet humanities students can surely be

offered the same opportunity that Seymour Papert, using Logo (Papert 1980), and Alan

Kay, using Smalltalk (Kay and Goldberg 2003), successfully offered to children. Adults

studying the humanities and the arts can also be allowed to learn programming.

The case for programming education would not be as strong if programming were

merely instrumental, if it involved nothing more than completing an already estab-

lished plan. In advocating that humanists and artists should program, I consider

exploratory programming, which involves using computation as a way of inquiring

about and constructively thinking about important issues.

Those who decide to become new programmers often find the motivation to do so

in their encounters with computers and in interacting with others who are using pro-

gramming to think about interesting problems. They often have concrete and personal

reasons for engaging with computing and do not need to consult the sort of argument

that I present here. The discussion here might, however, help humanities and arts stu-

dents better articulate their interest in programming to fellow students and to faculty

members.

One humanist who has advocated for programming education—both in his writing

and by teaching students to engage with programs in humanities classes—is Matthew

Kirschenbaum. He argues: “Computers should not be black boxes but rather under-

stood as engines for creating powerful and persuasive models of the world around us.

The world around us (and inside us) is something we in the humanities have been

interested in for a very long time. I believe that, increasingly, an appreciation of how

complex ideas can be imagined and expressed as a set of formal procedures—rules,

models, algorithms—in the virtual space of a computer will be an essential element of

a humanities education” (Kirschenbaum 2009).

Kirschenbaum is one of several humanists who were teaching programming to

undergraduate and graduate students in different contexts before the first edition of

this book was published. I have taught programming to media studies master’s students

at MIT and media studies master’s and undergraduate students at the New School, and

have MIT undergraduates doing computational writing projects in The Word Made

Digital and in Interactive Narrative (my current and older course Web pages are linked

from nickm.com/classes). Daniel C. Howe developed and taught the course Program-

ming for Digital Art and Literature (rednoise.org/pdal/) at Brown and RISD. At Georgia

Tech, Ian Bogost has taught courses that include a Special Topics in Game Design and

Analysis section (syllabus at bogost.com/teaching/atari_hacks_remakes_and_demake/)

http://nickm.com/classes
http://rednoise.org/pdal/
http://bogost.com/teaching/atari_hacks_remakes_and_demake/

Why Program?	 321

devoted to programming the Atari VCS. Allison Parrish teaches Python programming

in Reading and Writing Electronic Text (rwet.decontextualize.com), regularly offered

in NYU’s Interactive Telecommunications Program (ITP). Others who have taught pro-

gramming to humanists include Michael Mateas and Stephen Ramsay. There are also

many courses for artists and humanists in Processing, which was created by Ben Fry

and Casey Reas to help designers learn programming and is ideal for developing inter-

active sketches.

In the following sections, I offer arguments that programming

•	 allows us to think in new ways,

•	 offers us a better understanding of culture and media systems, and

•	 can help us improve society.

After this, I’ll return to the ways that programming can be enjoyable, explaining what

special qualities of programming may make it a particularly pleasing way to occupy our

time and to contribute new creative work to the world.

[A.3]  Cognitively: Programming Helps Us Think

One useful perspective on how computing can improve the way we think has been

provided by educational researchers, who chose to “distinguish between two kinds of

cognitive effects: Effects with technology obtained during intellectual partnership with

it, and effects of it in terms of the transferable cognitive residue that this partnership

leaves behind in the form of better mastery of skills and strategies” (Salomon, Perkins,

and Globerson 1991, 2).

The first of these effects is obvious in many domains. The person using a spreadsheet

to try out different budgets and scenarios is better prepared to innovate in business

than the person who lacks such a system and must calculate by hand. A civil engineer

modeling an unusually designed bridge with a computer is better able to ensure that

it is safe than is one who must rely on earlier methods. A radiologist using a modern,

computational MRI system is able to deliver a diagnosis in cases where X-rays would

not be adequate.

This positive effect of computation is what computer pioneer Douglas Engelbart

called “augmenting human intellect” (Engelbart 2003). Although there are very many

domains in which thinking with computers have proven effective, some people are

nevertheless resistant to the idea that thinking with computers can be helpful in the

humanities and arts. However, computing can be used to model artistic and humanis-

tic processes, just as it can be used to model business and economic processes, bridges

http://rwet.decontextualize.com

322	 Appendix A

from an engineering perspective, the human body from a medical perspective, and

so on. Thus, programming has the potential to improve our humanistic and artistic

thinking as well.

There is also hope that thinking computationally can enhance the way we think

more generally, even when we are not using computers. Indeed, there is evidence

that adding computational thinking to the mix of our experiences and methods can

improve our general thinking. Perhaps an obsessive focus on programming could be

detrimental. But those who have background in the arts and humanities and who

choose to learn programming are diversifying their ways of thinking, adding to the

methods and perspectives that they already have. Programming can help them con-

sider the questions they care about in new ways.

The research that has been done about whether programming improves cognition

has focused on younger learners who are still developing cognitively, not students in

higher education. Nevertheless, to provide some insight into the effects of computer

programming, I offer some results from the literature on whether learning to program

can help people of that age group improve their cognition.

[A.3.1]  Modeling Humanistic and Artistic Processes Is a Way of Thinking

Edward Bellamy, in Looking Backward: 2000–1887, projected a character more than a

hundred years into the future to explain the author’s utopian vision of society. Simi-

larly, Douglas Engelbart wrote about how computation could augment human intellect

in a more or less science fictional mode. Writing in the voice of a hypothetical aug-

mented human, Engelbart explained more than fifty years ago why people using com-

puters as tools (even if they were using the advanced technology that he envisioned)

should understand computer programming:

There are, of course, the explicit computer processes which we use, and which our philosophy

requires the augmented man to be able to design and build for himself. A number of people,

outside our research group here, maintain stoutly that a practical augmentation system should

not require the human to have to do any computer programming—they feel that this is too

specialized a capability to burden people with. Well, what that means in our eyes, if translated

to a home workshop, would be like saying that you can’t require the operating human to know

how to adjust his tools, or set up jigs, or change drill sizes, and the like. You can see there that

these skills are easy to learn in the context of what the human has to learn anyway about using

the tools, and that they provide for much greater flexibility in finding convenient ways to use

the tools to help shape materials. (Engelbart 2003, 93–94)

Engelbart presents one way of understanding the computer metaphorically, as a work-

shop that allows people to build things. Not being able to program is akin to not being

able to change a drill bit. A person can use a workshop in such circumstances but is

Why Program?	 323

limited. Another way of understanding the computer is as a laboratory. If people can

use the equipment that is there but are unable to change the experimental setup, then

they are limited in what experiments they can do. Seeing the computer in these ways,

as a means of thinking constructively or experimentally, helps to explain why people

who are artists and critical thinkers would want to be able to adjust computation in

a variety of ways. Such adjustment was done in Engelbart’s time, and still is done, by

computer programming.

Perhaps the most problematic aspect of the statement by the hypothetical aug-

mented human is the mention of how people often “learn anyway” about aspects of

programming. Environments for programming (typically, BASIC) became easily avail-

able to the everyday home computer user in the late 1970s and 1980s, but as powerful,

complex IDEs and compiled languages have been developed, programming has in some

cases become more difficult to access. People do not encounter it casually in the ways

they used to. This means that some unnecessary complexity has been hidden, which

is a positive outcome, but it also means that some flexibility has been removed. Still,

those who delve into HTML, learn to use regular expressions to search documents, and

start to develop short shell scripts do end up gaining some familiarity with their com-

putational tools and can build on that to begin to learn skills relevant to programming.

Engelbart’s work focused on improving complex processes and on facilitating

teamwork and was also very engaged with building models of salient aspects of the

world. While Engelbart was not focused on humanistic and artistic work, constructing

computational models is useful in the arts and humanities as much as in economics,

biology, architecture, and other fields. One way to frame this sort of model-building

in the humanities and arts is as operationalization, and this was the term used at the

Media Systems workshop in 2012. As the report of the workshop noted, “operational-

ization almost always involves novel scholarship both in computational systems and

in the area being modeled.” Unfortunately, “few individuals are prepared to do both

types of research, while interdisciplinary teams are difficult to assemble and support”

(Wardrip-Fruin and Mateas 2014, 48–49). If exploratory programming were under-

taken more often by humanists and artists, these explorers and programmers would

be able to do this work of operationalization more easily, both individually and in

collaborating teams.

Systems of these sorts, whatever domain they are in, inherently embody arguments

about the theories they draw upon. For instance, at the most abstract level, they seek

to show what parts of a theory can be formalized and what that formal representation

should be. Such systems, by virtue of how they are constructed, also argue that certain

aspects of a theory are independent and others are linked. These models can be used

324	 Appendix A

for reflection by scholars and researchers, for poetic purposes (to make new, creative

works), or for study. However, a computer implementation by itself, even without a

“human subjects” experiment, is a way of engaging with a theory and attempting to

understand and apply it in a new way.

[A.3.2]  Programming Could Improve Our Thinking Generally

Considerable educational research was undertaken in the 1970s and 1980s to assess the

value of computers in grade school education; some of this focused on computer pro-

gramming specifically. The results varied, but in 1991 a meta-analysis of sixty-five of

them, which involved coding the results from each and placing them all on a common

scale, was published. It considered quantitative studies available in university libraries

that took place in classrooms (at any grade level) and assessed the relationship between

computing programming and cognitive skills (Liao and Bright 1991, 253–254):

The results of this meta-analysis indicate that computer programming has slightly positive

effects on student cognitive outcomes; 89 percent of positive study-weighted [effect size] val-

ues and 72 percent of positive ESs overall confirm the effectiveness of computer-programming

instruction. . . . Students are able to acquire some cognitive skills such as reasoning skills, logi-

cal thinking and planning skills, and general solving skills through computer programming

activities. (Liao and Bright 1991, 257–262)

The researchers noted that the effect was moderate and that their analysis did not

assess whether computer programming was better to teach than were other alterna-

tives. Also, the study was assessing grade school education research rather than pro-

gramming education in colleges and universities. Still, the conclusion was that, at least

for young learners, there were observable cognitive benefits to learning programming.

This meta-analysis also determined that the benefits of learning to program could

go beyond a specific programming language. However, it suggested that the selection

of an appropriate language was important because programming education with Logo

had the greatest effect size (Liao and Bright 1991, 262). Logo was not used exclusively

for exploratory programming in the 1970s and 1980s, but I suspect that its use was

significantly correlated with an exploratory programming approach, which was part of

Seymour Papert’s original vision for the language. So I read these results as consistent

with (although not clearly demonstrating) the value of exploratory programming in

particular.

It’s true that these are K–12 studies, and the instruction provided was almost cer-

tainly either limited to learning about programming itself or to doing math. The effect,

too, was not a strong one. The significant gains from programming education—as

determined in this analysis of sixty-five studies—are quite relevant to the arts and

Why Program?	 325

humanities, however. Older students are developmentally different—and yet what if

opportunities remain to improve students’ “reasoning skills, logical thinking and plan-

ning skills, and general solving skills”? Doesn’t that, by itself, speak in favor of teaching

programming as a method of inquiry in the humanities and arts? Do any of the other

humanistic methods that we teach to these advanced students offer documented, gen-

eral cognitive benefits, observed at any grade level?

[A.4]  Culturally: Programming Gives Insight into Cultural Systems

The argument here is twofold. First, as critics, theorists, scholars, and reviewers, those

who have some understanding of programming will gain a better perspective on cul-

tural systems that use computation—as many cultural systems increasingly do. Second,

after learning to program, people are better at developing cultural systems as experi-

ments about, interventions into, augmentations of, or alternatives to the ones that

already exist.

[A.4.1]  Programming Allows Better Analysis of Cultural Systems

Douglas Rushkoff writes: “For the person who understands code, the whole world

reveals itself as a series of decisions made by planners and designers for how the rest of

us should live” (Rushkoff 2010, 140). By understanding how media and communica-

tions systems are programmed, we gain insight into the intentions of designers and

the influence of material history, protocols, regulations, and platforms. In many cases,

a full understanding of, for instance, a Web application will involve understanding

not only the decisions made by the developer of that application, but also the deci-

sions that have been made in creating and upgrading underlying technologies such as

HTML, CSS, and programming languages (JavaScript, PHP, Java, Flash).

Consider a few questions related to culture and computing: Why do many games

for the venerable Nintendo Entertainment System share certain qualities, while differ-

ent qualities are seen in even earlier Atari VCS games? How do the options offered for

defining video game characters, virtual world avatars, and social network profiles relate

to our own concepts of identity? How does word processing software, with its formats,

typographical options, and spell- and grammar-checking, relate to recent literary pro-

duction? How have tools such as Photoshop participated in and influenced our visual

culture? How did a small BASIC program exist in cultural and computational contexts

and have meaning to computer users of the 1980s? Because the cultural systems rele-

vant to these questions are software machines built out of code and hardware machines

made to be programmed, knowledge of programming is crucial to understanding them.

326	 Appendix A

Scholars in the humanities of have already used their knowledge of programming

and their understanding of computation to better understand the history of digital

media. Extensive discussion of this sort has been provided in book-length studies.

These include studies of early video games by Nathan Altice (2015) and Nick Montfort

and Ian Bogost (2009); of identity in digital media by D. Fox Harrell (2013); of word

processing by Matthew G. Kirschenbaum (2016); of Photoshop and visual culture by

Lev Manovich (2013); and of a one-line Commodore 64 BASIC program by Montfort et

al. (2013). In several of these cases, the methods of inquiry these scholars used included

developing software and learning from the process of programming. In all of these

cases, these scholars brought their understanding of computing—developed in part by

doing at least some amount of programming and exploration—to bear on these ques-

tions. While these particular studies have been done, many open questions remain

regarding how these and other programmed systems participate in our culture.

[A.4.2]  Programming Enables the Development of Cultural Systems

To ground this aspect of programming in practical concerns, consider that by learning

to program, people enlarge their ability to develop new cultural systems and to col-

laborate on their development. Michael Mateas, writing of his experience developing

a course in programming (one aspect of procedural literacy) for artists and humanists,

explains how an awareness of computation allows work on new sorts of projects:

Procedurally illiterate new media practitioners are confined to producing those interactive

systems that happen to be easy to produce within existing authoring tools. . . . collaborative

teams of artists, designers and programmers . . . are often doomed to failure because of the

inability to communicate across the cultural divide between the artists and programmers. Only

practitioners who combine procedural literacy with a conceptual and historical grounding in

art and design can bridge this gap and enable true collaboration. (Mateas 2005)

Mateas is not simply claiming that artists and humanists should learn computing

jargon so as to be able to bark commands at programmers. He is discussing communi-

cation at a more profound and productive level, the sort that allows for the exploration

and expression of new ideas.

To close the “two cultures” gap that Mateas identifies in new media and the digi-

tal humanities, it would of course be ideal for those who are technically expert to

learn some about the humanities as well. While the methods and goals of humanistic

research may not be obvious to all programmers, it is quite difficult to find program-

mers (at least, ones in the United States) who have never taken a course in the humani-

ties at all, who have never studied a novel or taken a history course. It is still easy,

however, to find artists and humanists who have no experience with programming.

Why Program?	 327

[A.5]  Socially: Computation Can Help to Build a Better World

Programming cannot only contribute to social and utopian thought; I believe it is also

uniquely suited to building productive utopias. I consider a utopia to be a society (usu-

ally represented or simulated in some way, although there are utopian communities

that are actual societies) that is radically different from our own and yet is also engaged

with our own society. A utopia might be an attempt to provoke people, or it might

be offered as a serious model that could be emulated. In any case, a utopia is not an

escapist vision, nor it is it an alternative place with no relation to our society, the sort

of place that has been called an atopia.

Utopias don’t have to be perfect to be useful to social and political thought. In terms

of provoking people to think about important issues in new ways, utopias can be pre-

sented that are worse than our current society. These are called dystopias; because they

present arguments about how our society might improve, I consider them to be in the

broad category of utopias as well.

Programming can be used to develop utopias via computer games and simulations.

The original Sim City, for instance, can be read as a model city that promotes mass tran-

sit and nuclear power. Modified versions of it could present other simulated societies,

using computation to make different arguments. Gonzalo Frasca makes the argument

that these types of simulation games could, if open to modification, become the “Sims

of the Oppressed” along the lines of Agosto Boal’s “Theatre of the Oppressed,” allowing

people to model and discuss social and political aspects of life (Frasca 2004). Program-

ming can also enable new social spaces and developments, such as pseudonymous

online support groups that are open to people around the world.

Both types of potential are indicated by Douglass Rushkoff: “We are creating a blue-

print together—a design for our collective future. The possibilities for social, economic,

practical, artistic, and even spiritual progress are tremendous” (Rushkoff 2010, 14). To

take this idea seriously, rather than cynically dismissing it: If we are to be designers of

our collective future, what does that sort of design entail, and what skills should we

have to participate in this collaborative activity?

Rushkoff offers his answer—that we should fully develop our ability to write online,

using computers:

Computers and networks finally offer us the ability to write. And we do write with them on our

websites, blogs, and social networks. But the underlying capability of the computer era is actu-

ally programming—which almost none of us knows how to do. We simply use the programs

that have been made for us, and enter our text in the appropriate box on the screen. We teach

kids how to use software to write, but not how to write software. This means they have access

328	 Appendix A

to the capabilities given to them by others, but not the power to determine the value-creating

capabilities of these technologies for themselves. (Rushkoff 2010, 19)

Given this perspective, it seems hard to justify that developing social media wiles

specific to whatever the current proprietary systems are—the ability to skillfully use

Facebook or Twitter, for example—really constitutes the core skill for the collective

designers of our future. It sounds like arguing that we will be able to develop a progres-

sive new society because we know how to navigate our local IKEA. If we envision our-

selves as empowered to determine a better future together, we will need to know much

more than navigation, more than how to shop, consume, select, and inhabit exist-

ing corporate frameworks. We will need to know how to participate in creating them,

whether the goal is incremental development or a radical provocation. In Engelbart’s

terms, we will need the full use of our home workshop to have all of the tools available

to us and adjustable.

Programming ability has been used to develop new cultural systems, of course. One

example is a system launched in 2009 by a for-profit company. This system, Dream-

width, aimed to correct problems with LiveJournal, which runs on free software code,

by forking that code to create a new system. The company improved the way the site

could be accessed on screen readers, provided a different privacy model for journal

viewing, and published the first widely discussed diversity statement. This cultural sys-

tem was developed with a focus on writers, artists, and others who were contributing

creatively. The community of developers that works on the Dreamwidth code (and,

because this is free software, also has full access to this code for any purpose) is remark-

able. By the first year after launch, half of the developers were people who had never

programmed in Perl or contributed to a free software project before, and about 75 per-

cent were women (Smith and Paolucci 2010). To put this in perspective, as of that year,

estimates of the percentage of women participating in free software projects overall

ranged from 1.5 percent to 5 percent (Vernon 2010).

The Dreamwidth response involved not just a verbal critique of the problems with

LiveJournal (where the Dreamwidth cofounders worked, initially); it also involved

more than just producing a proposal or mock-up of what might be better. The response

was a project to build a new system with the participation of programmers, including

many new programmers. The result was a site that hosts a diverse community and an

inclusive group of developers.

With that specific example in mind, consider one more statement from Rushkoff

about the importance of participating in and humanizing computing: “The more

humans become involved in their design, the more humanely inspired these tools will

end up behaving. We are developing technologies and networks that have the potential

Why Program?	 329

to reshape our economy, our ecology, and our society more profoundly and intention-

ally than ever before in our collective history” (Rushkoff 2010, 149).

[A.6]  Programming Is Creative and Fun

At the risk of trivializing what I understand as a cognitively empowering practice, one

that is capable of providing us better cultural understanding and one that can help us

build a better society, it would be remiss of me not to mention that programming is

an activity that gives the programmer poetic pleasure, the pleasure of making and of

discovery through making. I discussed earlier how programming is not only a hobby to

fill the time; this particular aspect of programming that I am discussing now is indeed

connected to some types of productive hobbies, as well as to artistic practices. It’s worth

noting that there are special creative pleasures of programming.

It is enjoyable to write computer programs and to use them to create and discover.

This is the pleasure of adding something to the world, of fashioning something from

abstract ideas and material code that runs on particular hardware. It involves realizing

ideas, making them into functional software machines, in negotiation with computa-

tional systems. The strong formulation of this impulse to make and implement in the

digital humanities specifically is the declaration that the only true digital humanists

are those who build systems (“hack”) rather than theorize (“yack”; Ramsay 2011). To

note that programming is creative and fun, however, does not require excluding other

types of involvement in a field, nor does it mean that it is not also fun to critically or

theoretically yack. It simply involves admitting the pleasure and benefits of hacking, of

exploring with programming.

Writing a program offers enjoyment that is not entirely unlike other types of mak-

ing in the arts and humanities: the way sound and sense grow and intertwine on the

lattice of a poem; the amazing configuration of voices, bodies, light, and space in a

play; the thrill of new connection and realization that can arise from a well-constructed

philosophical argument. In this way, the activity of programming can be consistent

with more traditional activities: writing, developing arguments, creating works of art.

[Appendix B]  Contexts for Learning

[B.1]

Even though this book contains detailed discussion of programming principles, I’ve

tried to be as flexible as possible when introducing programming. I’ve explained ways

of working with different media forms so that someone more interested in text can

continue and pursue that sort of work, while someone who cares more about images

can continue in that vein. Those who want to use programming mainly to create art

can pursue that direction, while those who want to work analytically can do so—and

those who have both sorts of interests can continue to pursue them both, too. Part

of that flexibility is allowing free projects that, within some constraints, are student-

directed and allow new programmers to establish their own goals.

Another way in which this book is meant to be flexible is that it can be used as a

textbook in a formal, semester- or quarter-long course, but can also be used less for-

mally, in shorter workshops, by informal groups meeting online or in person, or by

individuals.

When I teach classes and workshops, I like to begin by having people immediately

modify JavaScript, to show that fun and interesting results can be produced easily and

to get across the point that, materially, programming is no more than editing text. I

have found it just fine to even introduce the concept of the course and discuss the syl-

labus after people do this work and share it with each other. This project is basically

chapter 3, “Modifying a Program,” which can be done again after an initial encounter

with it in class.

Instead of using class time to introduce material that students are then expected to

read, I ask students to go through chapters of the book first—using all the methods

for learning, including doing the exercises and the free projects. The class meetings

can then focus on two aspects of learning: whatever was unclear or too difficult to

332	 Appendix B

accomplish, and whatever positive work students did accomplish in their free proj-

ects. In classes that are the size of workshops or seminars, those who gained a solid

understanding of the material can help those who are less certain. The students who

benefit from extra discussion and explanation can return during the next class meeting

to share their completed or expanded free projects. Because the material in the book

is varied in terms of how difficult each chapter is for different students, what media

the chapters focus on, and so on, students who take an extra week to present a free

project that satisfies them are not particularly behind in the course. They may find the

next chapter fairly easy and end up helping other students understand it through class

discussion.

Classes may meet three or two times per week, or just once per week. Personally, I

find it good to have a single class session of about three hours because there is a good

variety of work to do and this provides a nice block of time for critique of student

projects and discussion of concepts. If there is more time available during the week

because lab, recitation, or studio hours have been allocated, students can use the time

to work on their free projects, and the instructor can answer questions (or better yet,

help students answer them using available resources) and offer desk critiques of work

in progress.

I conclude the semester not with a typical large-scale term project but with what I

call a final exploration, in which students return to an earlier project and revise, rework,

and extend it using what they have learned since then. This should be a substantial

revision, oriented toward a further exploration and not just polishing something up.

But it shouldn’t start from scratch. This helps students revisit their earlier learning, see

how far they have come, and think critically about using programming for the intel-

lectual goals of inquiry and creativity.

A minor textual change, but a very important emphasis in learning, is that in this

edition I explicitly instruct learners to do the free projects a certain number of times,

almost always more than once. A single exploration is not much exploration, and even

those who are studying in a classroom and see other student projects will have a dif-

ficult time thinking about how their own programming process differs as they pur-

sue different ideas. This emphasis on trying out several different approaches will also

help students who feel they have to make a perfect, polished product. For purposes of

learning exploratory programming, and discovering how programming connects to

one’s interests in the arts and humanities, I consider that it’s much better to spend the

same amount of time creating four radically different clocks (in free project 14-3, Novel

Clocks) than it would be to spend the same amount of time making one that seems

really good.

Contexts for Learning	 333

What follows is a plan for allocating about 2.5 to 3 hours of weekly class time and

for planning the programming students will do outside of class.

[B.2]  Semester-Long (Fourteen-Week) Course

(Week 1)  [1] Introduction; [2] Installation and Setup; [3] Modifying a Program

(Week 2)  [4] Calculating and Using Jupyter Notebook; [5] Double, Double

(Week 3)  [6] Programming Fundamentals

(Week 4)  [7] Standard Starting Points

(Week 5)  [8] Text I: Strings and Their Slices

(Week 6)  [9] Text II: Regular Expressions

(Week 7)  [10] Image I: Pixel by Pixel

(Week 8)  [11] Image II: Pixels and Neighbors

(Week 9)  [12] Statistics, Probability, and Visualization

(Week 10)  [13] Classification

(Week 11)  [14] Image III: Visual Design and Interactivity

(Week 12)  [15] Text III: Advanced Text Processing; begin final explorations

(Week 13)  [16] Sound, Bytes, and Bits; work on final explorations

(Week 14)  Final exploration presentations; [17] Onward

In a ten-week quarter, with similar amounts of time devoted to the class each week,

less can be done, but an abbreviated version of the course is still possible. This plan is

for a faster pace at the beginning; it omits two of the later chapters. Some exercises and

sections of chapters 14 and 15 may be omitted to make room for final exploration work

and presentations on the last day.

[B.3]  Quarter-Long (Ten-Week) Course

(Week 1)  [1] Introduction; [2] Installation and Setup; [3] Modifying a Program; [4]

Calculating and Using Jupyter Notebook

(Week 2)  [5] Double, Double; [6] Programming Fundamentals

(Week 3)  [7] Standard Starting Points

(Week 4)  [8] Text I: Strings and Their Slices

(Week 5)  [9] Text II: Regular Expressions

(Week 6)  [10] Image I: Pixel by Pixel

334	 Appendix B

(Week 7)  [11] Image II: Pixels and Neighbors

(Week 8)  [12] Statistics, Probability, and Visualization

(Week 9)  [14] Image III: Visual Design and Interactivity

(Week 10)  [15] Text III: Advanced Text Processing; [17] Onward

It’s important in any class to determine if students are understanding the essential con-

cepts in each chapter—whether with “mud cards,” quizzes or other evaluation instru-

ments, discussion in class, or simply close examination of submitted student work. If

concepts aren’t clear for many students, there’s no point in progressing. Rather than

move on before people are ready to progress, it’s better to cover less material but under-

stand the underlying concepts, by removing topics/chapters from the end of the course

and going over topics again. It’s great to reach the end of the course, to program ani-

mation and use interaction in ways that are exciting for new programmers and to get

to understanding some of the internals of computing as they align with producing

sound. To learn to program, however, students need to fully understand iterating over

sequences, developing functions, and the differences between types so that they are

ready to work with those aspects of programming in any situation.

[B.4]  One-Day Workshop

In a one-day workshop that lasts the full day, it’s possible to at least sample a bit of

interesting text or image work, particularly if the material in chapter 7, “Standard Start-

ing Points,” is omitted or considered briefly. If one’s goal is to help people better cri-

tique programs, as critical code studies strives to do, it could be better to devote the

last phase of the workshop to close consideration of this chapter and not worry about

beginning the text or image work.

[B.5]  Individual and Informal Learning

The book is organized for individuals to go through it in order. For an individual reader,

it makes sense to read chapter 1 first, get through chapter 2, “Installation and Setup,”

and then start on chapters afterward that involve continually working with the com-

puter as a programmer.

The main suggestion I have for an individual learner is to find at least one other

person who can work with you as you learn programming. It’s extremely useful to

discuss the material in the book, to be able to name the constructs and concepts while

thinking through programming. It’s also great to be able to share one’s free projects

Contexts for Learning	 335

with others. Even if you aren’t part of a group going through the book together, you

should see if you can show your projects to others and elicit some responses, com-

ments, thoughts, and suggestions.

[B.6]  A Final Suggestion for Everyone

I have taught this material over the years in a wide variety of contexts. I’ve worked

with many types of learners who have different attitudes toward programming and

who come from different sorts of arts and humanities backgrounds. My conclusion is

that people do not principally have difficulty with the nature of the concepts. That is,

people do not typically struggle to learn how to program because programming is a

technical or mathematical practice.

The main difficulty, instead, comes when people expect to be informed and to learn

only by listening, watching, and taking notes. Some people are under the impression

that they can learn about programming simply by paying attention in class, reading

a book, and perhaps having a discussion now and then. For this reason, the problems

I see are not with the technical or mathematical part of programming, but with the

practice part.

Programming is a practice, and it takes practice. Like learning how to drive a car or

play a musical instrument or participate in a sport, the learner who does not do the

activity—who does not undertake the practice—is not going to succeed. On the other

hand, I have personally seen dozens of people who began with no programming back-

ground at all accomplish several remarkable projects in the space of a semester, using

computation in a compelling way—many compelling ways, in fact.

So more than anything else: drive the car, play the instrument, and play the sport by

actually programming the computer, often and like you mean it.

[Glossary]

().  Called parentheses in this book, they must not be confused with brackets, []. They are used in

many programming languages in several ways—for instance, to group together parts of an arith-

metic expression and to contain the zero or more arguments accepted by a function or method. In

Python, they are also used to indicate one type of sequence, a tuple.

[].  Called brackets in this book, they must not be confused with parentheses, (). They are used

to indicate a list in Python and a very similar data type, an array, in Processing and JavaScript.

&, |, <<, >>.  See bitwise operations.

=.  In all programming languages discussed in this book, a single equal-sign is used for assign-

ment, to associate a value with a variable. As unusual as it may seem, the single equal-sign is not

an assertion that one things equals another, nor is it a test for equality.

==.  In all programming languages discussed in this book, two equal-signs are used to test for

equality, to ask whether a variable has a particular value or whether one variable has the same value

as another variable. The result is a Boolean. In case you see three equal-signs used in JavaScript,

that’s not a mistake. It is an even stricter equality test, only true if there is the same type of data

on each side.

abstraction.  Representing the essence. In computing, abstraction is often concerned with gener-

ality: How can a specific computation, a specific portion of code, be developed that works appro-

priately not only for a particular piece of data, but in many different circumstances? Figuring this

out involves determining the essence of this computation, as opposed to the details that happen

to apply in the immediate situation.

alpha.  One of four “colors,” along with red, green, and blue, which represents how opaque or

transparent a particular pixel is.

argument.  A means of passing data to a function or method. When defining a function or method,

and when calling it, arguments are always enclosed in parentheses. Some functions accept no argu-

ments, but an empty pair of parentheses is still needed. Within the function or method, argu-

ments are used the same way that variables are.

338	 Glossary

array.  A data type very similar, although not identical, to a list in Python and other programming

languages.

assignment.  See = near the beginning of this glossary.

attribute.  Like a variable, but belonging to a class or an object, an attribute holds data. It could

also be said to store or label data, as a variable does. Attributes are how objects store data, just as

methods are the way objects store computation.

block.  In precise use, a unit of code, which may be several lines long, that is grouped together, for

instance so that a loop proceeds over all of it or a conditional statement causes all of it (or none of

it) to be executed. In Python, a code block is indicated with indentation, while in Processing and

JavaScript, curly braces, {}, are used.

Boolean.  A type that can be either true or false. In Python, these are represented as the capitalized

values True or False, while in Processing and JavaScript they happen to be all lowercase, true or

false. Such a value results from checking to see if an equality (such as x == y) or inequality (such

as x > y) holds. Unlike other types, the name of this one is capitalized, because it is named after

a person, George Boole.

bounded.  Refers to a loop that is going through each element in a sequence or counting up to

some fixed limit. For instance, in the Python loop that has as its top line for i in [10, 20, 30]:

the loop is bounded, and the code within the loop will be called only three times. There are also

unbounded loops.

bit.  A binary digit, either 0 or 1, corresponding to the smallest unit of digital information.

bitwise operations.  While + (addition) and * (multiplication) are operations that add and mul-

tiply decimal numbers, the bitwise operations work on bytes in ways that are specific to binary

numbers. For instance, << is left shift, and by shifting every bit over one position to the left, it

changes 00100111 to 01001110.

brackets.  See [] near the beginning of this glossary.

byte.  A low-level unit of data corresponding to a binary number—specifically, eight bits.

bytebeat.  A kind of computer music produced by a function that accepts the time as an argu-

ment and outputs bytes.

call.  To call (or invoke) a function or method is to transfer execution to it, also handing it data if

the function or method accepts any arguments. When the function or method finishes running,

it will return, so that execution continues right after the call.

casting.  Changing the type of some data—for instance, by making an integer variable num into

a floating-point number with float(num) or by making that integer variable into a string with

str(num).

class.  A blueprint for objects. For instance, if particular parcels are represented as objects in a

courier service’s computer system, the Parcel class will describe all the data that can be associated

Glossary	 339

with a parcel in this system, and it will include methods for accessing and updating that data. If

a recipient phone number is truly required for each parcel in every case, it will make sense to

enforce that in the class. A particular parcel object will then be an instance of this class, created

through instantiation. To understand even the basics of object-oriented programming, including

developing one’s own classes and instantiating objects using them, will require study beyond

this book.

classifier.  A system to quantitatively categorize inputs, either into one of two categories (a binary

classifier) or into more than two categories. Typically, a classifier is developed using machine learn-

ing techniques and trained on data, although some are manually written rule-based classifiers.

code.  (n.) Formal text that is processed algorithmically. For our purposes, the term usually refers

to a computer program or part of such a program, although for instance HTML (which specifies the

structure of a Web page) and CSS (which specifies the visual appearance of a Web page) are code

as well. In this book, we discuss source code, which is human-readable and written by people,

although a compiled application can be described as consisting of machine code. (v.) To write code.

command line.  The text-based environment for computer use, allowing the same sorts of things

that are done with the graphical user interface (GUI) to be done by typing commands. On GNU/

Linux and Mac OS, the command line is usually accessed via a terminal; on Windows, the Com-

mand Prompt is used. The Anaconda Prompt on Windows is also a command line.

comment.  A message added to code that is ignored by the interpreter or compiler, having no effect

on how the program functions. Comments can be delimited in many different ways in different

languages, and sometimes in a few different ways within one language. In Python they can be on

lines beginning with # and in Processing on lines that begin //. Comments can be used to anno-

tate a program, to help the original author and other human programmers understand why the

code is written as it is. Comments can also be used to “comment out” lines of code that program-

mers may wish to relocate, revise, or put back into place later.

compiler.  A computer program that accepts code as input and produces an executable file. Strictly

speaking, other programs such as a linker may be involved in the process, but the main distinction

from an interpreter is that a runnable program results from compilation, whereas an interpreter

begins running a program step by step. The Processing IDE provides a way to compile a program

and run it in a single step.

conditional.  The “if” statement, which allows computation to be done only in the case in which

some condition, and specifically an expression of some sort, is true.

corpus.  A “body” of digital documents, digital photographs, or the like.

CSS (cascading style sheet).  Used for specifying the visual appearance of a Web page, the infor-

mation encoded in CSS can be embedded in HTML or placed in a separate file.

directory.  Equivalent to what appears in a GUI as a folder, this is just a container for files, one

that can be placed within other directories. On the command line, this term is used instead of

“folder.”

340	 Glossary

DRY.  “Don’t Repeat Yourself.” Good programming advice that implores programmers to refactor

and remove duplicate code, which can lead to many sorts of errors as development continues. As

you are exploring, it is expedient at times to hastily duplicate code and see if a particular approach

will work. Even during exploration, however, it is always a good idea to think through what you

have done, as soon as you know what direction you are going to have, and refactor to avoid

repetition.

encapsulation.  A type of abstraction that defines helpful boundaries to prevent unintentional

interference between parts of a system.

empty list.  The list [] that has no elements in it and thus a length of 0. The string that corre-

sponds to the empty list is the null string. Usually one reads of the empty list because there is only

one: the number of ways that zero elements can be included in a list is only one.

equality.  See == near the beginning of this glossary.

error.  Very generally, a problem with either a runnable computer program or a problem that pre-

vents some code from being valid. In the latter case, a syntax error is one kind of error frequently

encountered. This means that the code entered does not fit the proper form, as if you were sup-

posed to enter your email address but you typed something that didn’t have the @ character in it.

An error message provides the best help the interpreter or compiler can offer, directing the program-

mer to what seems to be the exact location of the error.

expression.  A representation of some sort of operations to be performed. For instance, 2 - 4 is

an expression with one operation, subtraction, and with the value 4 to be subtracted from the

value 2. Expressions can include variables (as in temperature + increase), can include logical

operations (power_on and cable_connected), and can have more than one operation in them, in

which case parentheses are often used for clarification, as in (1 + 3) * 3. Expressions that evalu-

ate to a Boolean value are used in conditionals. By itself, an expression can be valid or not. Even if

an expression is valid, it may or may not correctly represent what it is intended to represent. The

simplest expressions are just values themselves, such as -2.

file extension.  The suffix to a file name, such as .py or .txt, which is one way of indicating the

sort of file one is dealing with. File extensions are useful for programmers but are hidden by

default on Mac OS X and Windows systems. Note that changing a file extension does not convert

between file formats: a JPEG image cannot be made into a PNG image simply by changing .jpg

to .png.

floating point.  A type of number representation that has a decimal point and is of variable pre-

cision. Things that can be counted are probably better represented as integers, but the mean of

several numbers, for instance, is almost certainly better represented as a floating-point number.

for loop.  See loop.

free software.  A concept distinct from “no-cost” software, free software includes several funda-

mental freedoms, including the freedom to use the software for any purpose and the freedom to

inspect, study, and modify it. The term open source indicates a closely related concept.

Glossary	 341

function.  A bundle of computation that accepts zero or more values as inputs and returns zero

or one values as outputs. In mathematics, a function is a mapping from some domain (e.g., real

numbers representing Fahrenheit temperatures) to a codomain (e.g., real numbers representing

Celsius temperatures) in which each input has a unique output (which is true in the case of this

conversion because no two Fahrenheit temperatures convert to same Celsius temperature). In com-

puting, however, there is no restriction of this sort for functions. A function capital() can return

True for every capital letter and False otherwise; the inputs do not need to each map to a unique

output. In fact, functions in computing do not need to return a value at all. Functions are usefully

thought of as encapsulations of code that could have occurred elsewhere in the program. They are

very similar to methods, which are part of classes or objects and thus can be encapsulated with data.

HTML (Hypertext Markup Language).  A formal computer language used to define the structure

of Web pages. Web pages written in HTML are a type of code, but unless they contain JavaScript,

they do not function as programs.

IDE (integrated development environment).  A special application for writing computer pro-

grams, allowing a programmer to easily run and debug them.

immutable.  Describes a data type whose value (or values, in the case of a sequence) cannot be

changed after assignment. The tuple is one such data type in Python.

import.  The keyword used in Python to indicate a module should be loaded and its components

made accessible. Also, conceptually, the process of loading a module.

index.  The number corresponding to a particular character position in a string or a particular

element in a list or array. Index 0 corresponds to the first character or element, the one that is

offset 0 from the beginning.

initialize.  To set a variable to some initial value. A variable being used to keep count of some-

thing, for instance, will usually be initialized to zero.

integer.  A number, positive, negative, or zero, that does not have a decimal point followed by

digits—for example, 17, -69105, and 0, but not 3.333333. Numbers with decimal points can be

represented as floating-point numbers.

intentional.  Describes a working program that does what it is supposed to do at the current stage

of its development. Just because a program is valid, and does something, does not mean that it is

intentional. This term, unlike valid, is idiosyncratic, but the concept is quite important.

interactive.  A program is interactive if it accepts user input when it is running.

Internet.  The worldwide network of computers connected via the TCP/IP protocol. These days

many people write about “the internet,” with a lowercase i. In popular writing this seems fine

and unlikely to cause any confusion. In this book, I’ve kept the capitalized form because histori-

cally, and currently, there are other large-scale networks and internetworks, such as BITNET and

FidoNet, and various interbank networks, such as Interac in Canada. From a technical standpoint,

however pervasive and ordinary the Internet seems, it is still one particular network just as these

others are, and thus a proper noun.

342	 Glossary

interpreter.  A computer program that accepts code as input and executes it. An interpreter allows

one to run source code, or a script, directly from a text file. The intermediate step of using a com-

piler is not needed when one uses an interpreter to run code. For instance, the python command

functions as a Python interpreter (although it actually does some compiling for efficiency), as does

Jupyter Notebook. Web browsers interpret JavaScript.

invoke.  See call.

iterate.  To progress through a loop, repeatedly executing the code in the loop. “Iter” means

“same,” but while the same code is executed, the values of parameters very often differ. Itera-

tion can be used to count the vowels in a string, for instance, and can be nested so as to proceed

through all the pixels in a two-dimensional image.

lemma.  In WordNet, a particular surface form of what we think of as a specific sense of a word.

For instance, “bike” and “bicycle” are two lemmas connected to the same underlying sense.

library.  A modular collection of code that can be easily reused—for instance, by calling func-

tions and methods provided in it. The term is generally used in many programming languages. In

Python, a library will take the form of what is technically called a package or module, which can

be accessed using an import statement.

list.  A data type that is a mutable sequence, very commonly used in Python but also central to

several other languages, including Lisp (which stands for list processing). The shortest list, [], is

the empty list. If a list has elements, and more than one, they are separated by commas between

the brackets, as in [34, 28, 23, 14, 8]. Elements of lists can be removed and new elements

appended, lists can be concatenated together, and lists can be easily sorted. A list is very similar to

an array, a data type in Processing and JavaScript.

loop.  (n.) Part of a program in which code is executed multiple times as the program iterates. A loop

is usually defined with a standard template. It may be bounded or unbounded. The for loop, with its

slightly different syntax in different programming languages, is a way to define a bounded loop. An

infinite loop is one kind of unbounded loop. (v.) To iterate.

method.  A bundle of code very similar to a function but encapsulated with data as part of a class

or object. An attribute is similar to a method, but it holds data rather than code.

module.  See library.

nested.  Refers to placing code within a control structure such as a loop. In particular, a nested

loop is a loop placed within another loop. To visit every pixel in a two-dimensional image, a pro-

gram will typically use nested loops, for instance to through every possible y value and for each

such value go through every possible x value. For a three-dimensional data structure, another level

of nesting can be added.

null string.  The string with no characters in it and thus a length of 0. The list that corresponds

to the null string is the empty list. Usually one reads of “the” null string because there is only one:

the number of ways that zero characters can be included in a string is one.

Glossary	 343

object.  A bundle of related computation and data. Objects are often used to model particular

entities in systems in the world. For instance, a courier service’s computer system might model

parcels as objects. This would allow the representation of relevant data (such as recipient address

and delivery status) and would allow the company to enforce that this data can only be updated in

sensible ways (a parcel without a recipient address cannot be given the status of “delivered to recip-

ient,” for instance). While we make use of objects and the methods they provide throughout this

book, readers will have to do additional study to be introduced to object-oriented programming.

open source.  Programs whose code is available and open to inspection and study. Closely related

to the concept of free software. Indeed, these terms are sometimes used to mean the same thing.

operator.  A means of doing a basic operation, such as the arithmetic operation of addition. In

that case, the operator is +. Operators can be used in expressions to do computation.

parameter.  In computing, a variable (or possibly a hard-coded value that is manually changed

by a programmer during exploration) that can allow an otherwise static or fixed system to vary

in certain ways.

parentheses.  See () at the beginning of this glossary.

part-of-speech (POS) tagger.  A computational linguistics system that associates a part-of-speech

tag (such as JJ for adjective) with each word in the text it is given as input. Taggers today are highly

accurate for many kinds of data, but it’s important to understand that they do not determine the

full syntactical structure of sentences.

pixel.  The unit of a bitmapped image, one “picture element” in a grid of them.

polarity.  In sentiment analysis, the extent to which some text expresses sentiment at all, for

instance, as opposed to being a statement of objective fact.

polymorphism.  The ability of code, and particularly operators, functions, and methods, to work

properly on different data types. In Python, + works to add numbers together (including both

integers and floating-point numbers), and it also works to concatenate, or join, strings.

program.  (n.) A formal specification, written in a programming language, of computation to be

performed. While a program, like other files on disk, is data, it is different from an MP3 or other

file in that it is executable: because it specifies computation in a formal way, it can run rather than

just play or be viewed. (v.) To write programs.

programming.  The writing of programs, from scratch or by modifying existing code. Program-

ming can be exploratory or done to implement a predetermined idea. In all cases but the very

simplest, programming is an iterative process in which code is tried out, revised, refactored, and

expanded. The programmer uses modularity, reuse of existing code, libraries, and other kinds of

abstraction to accomplish goals, whether these goals are directly instrumental or are ones of art

or inquiry.

programming language.  A formal system that specifies the syntax in which computer programs

can be written and the semantics of these programs (what they do when executed). Programming

344	 Glossary

languages work on particular platforms (with many of them being cross-platform) and support

different approaches to programming.

quantifier.  An element of a regular expression that indicates how many characters, or grouped

expressions, will match.

recursion.  A method of computing results that involves decomposing a problem into one part

that can be solved easily and a simpler instance of the original problem. A recursive function calls

itself to deal with this simpler instance. For instance, to recursively check to see if a list is a palin-

drome, the part that can be solved easily is checking to see whether the first element and the last

element are the same. The part that is a simpler instance of the original problem is checking to see

if the “rest” (all but the first and last element) is a palindrome, by applying the same computation

to the rest of the list. Eventually, because each instance of the problem is simpler, the recursion

will reach a base case and end. For palindrome checking, the base case is a string that is less than

two characters long. The typical joke is to offer simply “See recursion” as a definition of recursion.

However, note that this recursion is broken, as it has no base case.

refactoring.  The process of improving the clarity and/or efficiency of code without changing the

essential computational task that it carries out. By refactoring, the programmer is not trying to

make the code do something else but to make it do whatever it already does in a way that is more

understandable and extensible.

regular expression (regex).  A sophisticated means of searching through and matching certain

parts of a text that provides a more powerful method than simply searching for a word, but is not

as complex as writing a computer program.

return.  The keyword used to provide a value at the higher level, back to where a function or

method is called, when its execution is complete. Also used to conceptually describe what happens:

a function or method returns when it is done.

RGB, RGBA.  Two color modes that computers use: (1) red, green, blue; and (2) red, green, blue,

alpha. Whether there are three or four components, each one has a value between 0 (darkest, or

completely transparent for the alpha channel) and 255 (lightest, or completely opaque).

saturation arithmetic.  A kind of arithmetic used in computer graphics. When a result is greater

than a certain threshold (255 in the case of graphics), it is set as that maximum value. When a

result is less than a minimum (0 for graphics) it is set as that minimum. In graphics, this means

that an attempt to set a pixel as a negative number, representing “super black,” will not produce

an error; instead, the value will be set to the lowest valid amount, 0.

scope.  The limits placed on code, defining access to variables. For instance, any variables declared

within a function are local to that function, and changing their values will not affect any variables

that happen to have the same name outside of that function. Although scope can be difficult for

new programmers to understand, it is important because it allows encapsulation and modularity,

which in turn makes many projects, even exploratory ones, practical.

script.  Another name for a program, used with those that are interpreted rather than compiled.

Glossary	 345

sequence.  An ordered collection of elements, each of which can be accessed by index or by slic-

ing. In Python, strings, lists, and tuples are sequences.

slice.  A portion of a sequence accessed, in Python, by placing [a:b:c] after the sequence, where

a is the (optional) starting index, b is the (optional) end index, and c is the (optional) step. Slicing

is forgiving, so if there are no characters or elements in the specified slice, a null sequence will be

returned and no error will be raised.

source code.  See code.

string.  In any modern programming language, zero or more characters (such as letters, numerals,

punctuation marks) in order. Strings represent textual data. In Python, strings are one type of

sequence.

syntax error.  See error and valid.

synset.  In WordNet, a collection of terms that corresponds to one sense of a word, encapsulated

in a SynSet object. Words that have more than one sense will be part of more than one synset.

tagger.  See part-of-speech (POS) tagger.

template.  My term for the very standard and regular structures used in programming languages

to define, for instance, functions and loops. Once a new programmer understands conceptually

what function definition is and how loops control the flow of a program, it’s possible to do the

same basic work in different programming languages simply by understanding how these stan-

dard templates differ.

text editor.  An application for creating and editing plain-text files. A word processor is not a text

editor and is set up to save documents, by default, in a different format.

token.  A “word” as we think of it when we do a word count. The sentence “The cat is on the

mat” has six tokens. Two of them are “the.” The other view of a “word” is as a type.

tokenizer.  A system for dividing a text into tokens.

tuple.  In Python, a data type that holds a fixed sequence of elements. A tuple is a sequence, as

is a list, but it is immutable; elements cannot be added to it, removed from it, or have their values

changed. Tuples can be indicated with parentheses and comma-separated values, such as (1, 2,
3), and are good when one wishes to specify a fixed number of values, such as coordinates in an

image and the RGB or RGBA color values of a pixel. Tuple is the general term for sequences of any

size; those with three elements are called triples, those with two elements pairs, and those with

one element singletons. There is also (), the empty tuple. When specifying a singleton, it is neces-

sary to add a comma before the closing parenthesis, like so: (17,).

type.  (n., computing.) The overall category or kind of data that is being represented. For instance,

'hello' is of the type string, whereas 17 is of the type integer. Types are used to see if certain opera-

tions or computations are sensible. For instance, if a program attempts to divide 17 by 'hello',

this almost certainly results from a mistake on the programmer’s part. A type system can help

to catch such errors soon after they are made, making development and exploration easier. (n.,

346	 Glossary

linguistics) A “word” as we think of it when we look at word usage and figure out which word is

most frequent. The sentence “The cat is on the mat” has five types. Of them, “the” is the most

frequent as it is used twice. The other view of a “word” is as a token.

unbounded.  Refers to a loop that may have a condition for continuing but does not have a

fixed number of iterations. For instance, in a Python loop beginning while True: the loop is

unbounded, and there is no way to determine from the loop itself how many times the code under

it will be executed. This particular loop seems like an infinite loop, but unbounded loops do not

have to take such a form, and here it is possible that some of the code within the loop allows for

breaking out if some condition obtains—for instance, if the user presses a key or clicks the mouse.

In classic, noninteractive punched card computing, it was a mistake to have an infinite loop,

which would consume system resources and the paper being used for output. However, creat-

ing an infinite loop is not always incorrect today; Web servers, printer spools, and other systems

should in many cases run until the process is externally terminated, and plenty of recreational and

aesthetic programs run infinitely.

valid.  Syntactically or formally correct. For instance, if a person using an automatic teller

machine (cash machine) is prompted to enter a four-digit PIN followed by Enter, any four digits

followed by Enter constitute a valid (formally correct) response. Pressing the # key or pressing

fewer than four digits would be invalid. The question of whether the PIN is the correct one is a

separate matter; if it was entered with four digits followed by Enter, then it is of the correct form.

Expressions by themselves, as well as entire programs, can be valid or not. Programs, once they are

valid, can also be intentional, modeling what they were intended to model—but whether they are

is a separate question.

value.  A specific piece of data that can be output or used in a computation. For instance, if a pro-

gram should always stop after processing ten items, it might contain if (count < 10): in which

count is a variable, while 10 is a value. When this code is run, the variable count will (most likely)

take on different values each time execution reaches this line.

variable.  A label or slot for a value. A variable can “vary” in that it can represent many differ-

ent values. For instance, the variable count can first have the value 1, then 2, then 3, and so on.

Variables can be used in expressions. Variables can have any names the programmer chooses; the

functioning of the program is not affected, although the ability of people to understand it may be.

whitespace.  A general term for tabs, spaces, and newlines, which are used to space out other

characters but usually are simply represented as blank areas. Text editors and IDEs do allow pro-

grammers to make whitespace visible, however. In Python, indentation and whitespace is a sig-

nificant part of the programming language, while it does not play the same role in Processing or

JavaScript. Those using this book should always use spaces (not tabs) in Python.

[References]

Altice, Nathan. 2015. I AM ERROR: The Nintendo Entertainment System. Cambridge, MA: MIT Press.

Burdick, Anne, Johanna Drucker, Peter Lunenfeld, Todd Presner, and Jeffrey Schnapp. 2012. Digi-

tal_Humanities. Cambridge, MA: MIT Press.

Burroughs, William S. 2003. “The Cut-Up Method of Biron Gysin.” In The New Media Reader,

edited by Noah Wardrip-Fruin and Nick Montfort, 89–91. Cambridge, MA: MIT Press.

Danziger, Michael. 2008. “Information Visualization for the People.” SM thesis, Department of

Comparative Media Studies, Massachusetts Institute of Technology.

Dobson, James E., and Rena J. Mosteirin. 2019. Moonbit. Santa Barbara, CA: Punctum Books.

Engelbart, Douglas. 2003. “From Augmenting Human Intellect: A Conceptual Framework.” In The

New Media Reader, edited by Noah Wardrip-Fruin and Nick Montfort, 93–108. Cambridge, MA:

MIT Press.

Frasca, Gonzalo. 2004. “Videogames of the Oppressed.” In First Person: New Media as Story, Perfor-

mance, and Game, 85–94. Cambridge, MA: MIT Press.

Freedman, David A. 2009. Statistical Models: Theory and Practice. 2nd ed. London: Cambridge Uni-

versity Press.

Fry, Ben. 2007. Visualizing Data: Exploring and Explaining Data with the Processing Environment.

Cambridge, MA: O’Reilly Media, Inc.

Gold, Matthew K., ed. 2012. Debates in the Digital Humanities. Minneapolis: University of

Minnesota.

Harrell, D. Fox. 2013. Phantasmal Media: An Approach to Imagination, Computation, and Expression.

Cambridge, MA: MIT Press.

Hartman, Charles O. 1996. The Virtual Muse: Experiments in Computer Poetry. Middletown, CT:

Wesleyan University Press.

Heikkilä, Ville-Matias. 2011. “Discovering Novel Computer Music Techniques by Exploring the

Space of Short Computer Programs.” arXiv preprint. arxiv.org/abs/1112.1368.

http://arxiv.org/abs/1112.1368

348	 References

Hill, Benjamin Mako. 2011. “Freedom for Users, Not for Software.” Benjamin Mako Hill (blog).

October 23, 2011. mako.cc/writing/hill-freedom_for_users.html.

Kafai, Yasmin B., and Quinn Burke. 2014. Connected Code: Why Children Need to Learn Program-

ming. Cambridge, MA: MIT Press.

Kay, Alan, and Adele Goldberg. 2003. “Personal Dynamic Media.” In The New Media Reader, edited

by Noah Wardrip-Fruin and Nick Montfort, 391–404. Cambridge, MA: MIT Press.

Kirschenbaum, Matthew G. 2009. “Hello Worlds: Why Humanities Students Should Learn to Pro-

gram.” Chronicle Review, January 23, 2009. chronicle.com/article/Hello-Worlds/5476.

Kirschenbaum, Matthew G. 2016. Track Changes: A Literary History of Word Processing. Cambridge,

MA: Harvard University Press.

Liao, Yuen-Kuang Cliff, and George W. Bright. 1991. “Effects of Computer Programming on Cog-

nitive Outcomes: A Meta-Analysis.” Journal of Educational Computing Research 7, no. 3: 251–268.

Manovich, Lev. 2013. Software Takes Command. London: Bloomsbury.

Mateas, Michael. 2005. “Procedural Literacy: Educating the New Media Practitioner.” On the

Horizon—The Strategic Planning Resource for Education Professionals 13, no. 2: 101–111.

Montfort, Nick, and Ian Bogost. 2009. Racing the Beam: The Atari Video Computer System. Cam-

bridge, MA: MIT Press.

Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost, Jeremy Douglass, Mark C. Marino, Michael

Mateas, Casey Reas, Mark Sample, and Noah Vawter. 2013. 10 PRINT CHR$(205.5+RND(1)); :

GOTO 10. Cambridge, MA: MIT Press.

Murray, Janet H. 2011. Inventing the Medium: Principles of Interaction Design as a Cultural Practice.

Cambridge, MA: MIT Press.

Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic

Books, Inc.

Pine, Chris. 2005. Learn to Program. 2nd ed. Raleigh, NC: Pragmatic Bookshelf.

Raja, Tasneem. 2014. “We Can Code It! Why Computer Literacy Is Key to Winning the 21st

Century.” Mother Jones, June 16, 2014. motherjones.com/media/2014/06/computer-science

-programming-code-diversity-sexism-education.

Ramsay, Stephen. 2011. “Who’s In and Who’s Out.” Paper presented at the History and Future of

Digital Humanities panel, Modern Language Association Convention, Los Angeles, CA, January

6–9. stephenramsay.us/text/2011/01/08/whos-in-and-whos-out/.

Reas, Casey, and Ben Fry. 2007. Processing: A Programming Handbook for Visual Designers and Art-

ists. Cambridge, MA: MIT Press.

Reas, Casey, and Ben Fry. 2010. Getting Started with Processing. Cambridge, MA: O’Reilly Media,

Inc.

http://mako.cc/writing/hill-freedom_for_users.html
http://chronicle.com/article/Hello-Worlds/5476
http://motherjones.com/media/2014/06/computer-science-programming-code-diversity-sexism-education
http://motherjones.com/media/2014/06/computer-science-programming-code-diversity-sexism-education
http://stephenramsay.us/text/2011/01/08/whos-in-and-whos-out/

References	 349

Richardson, Leonard. 2013. Alice’s Adventures in the Whale. Crummy, November 18, 2013. Code

and text at crummy.com/software/NaNoGenMo-2013/.

Rushkoff, Douglas. 2010. Program or Be Programmed: Ten Commands for a Digital Age. New York:

OR Books.

Salomon, Gavriel, David N. Perkins, and Tamar Globerson. 1991. “Partners in Cognition: Extend-

ing Human Intelligence with Intelligent Technologies.” Educational Researcher 20, no. 3: 2–9.

Shiffman, Daniel. 2009. Learning Processing: A Beginner’s Guide to Programming Images, Animation,

and Interaction. Burlington, MA: Morgan Kaufmann.

Shiffman, Daniel. 2012. The Nature of Code: Simulating Natural Systems with Processing. Edited by

Shannon Fry. New York: Daniel Shiffman.

Smith, Mark, and Denise Paolucci. 2010. “Build Your Own Contributors, One Part at a Time.”

Presentation slides. January 20. slideshare.net/dreamwidth/build-your-own-contributors-one

-part-at-a-time.

Tozzi, Christopher. 2017. For Fun and Profit: A History of the Free and Open Source Software Revolu-

tion. Cambridge, MA: MIT Press.

Vernon, Amy. 2010. “Dreadfully Few Women Are Open Source Developers.” Network World

(blog). March 5, 2010. networkworld.com/community/node/58218.

Wardrip-Fruin, Noah, and Michael Mateas. 2014. “Envisioning the Future of Computational

Media: the Final Report of the Media Systems Project.” mediasystems.soe.ucsc.edu/sites/default

/files/Media%20Systems-Full%20Report.pdf.

http://crummy.com/software/NaNoGenMo-2013/
http://slideshare.net/dreamwidth/build-your-own-contributors-one-part-at-a-time
http://slideshare.net/dreamwidth/build-your-own-contributors-one-part-at-a-time
http://networkworld.com/community/node/58218
http://mediasystems.soe.ucsc.edu/sites/default/files/Media%20Systems-Full%20Report.pdf
http://mediasystems.soe.ucsc.edu/sites/default/files/Media%20Systems-Full%20Report.pdf

[Index]

Page numbers followed by f refer to figures.

10 PRINT CHR$(205.5+RND(1));: GOTO 10

(Montfort et al.), 3

== (equality operator, Processing), 270, 271,

276

== (equality operator, Python), 75, 84–87, 90,

91, 105, 107, 108, 112, 115, 127–128, 138,

141–145, 285, 291, 293

Absolute zero, 102–104

Abstraction, 5, 42

capturing the essence and, 65

double() (custom Python function) and,

82–84, 114

editions and, 231

functions and, 65, 67–71, 86–87, 90, 142,

160, 182, 199, 260–261

generalization and, 64, 181–184

hardware and, 177–178

ignoring the irrelevant and, 42, 44

images and, 168, 209–210

interface to a function and, 59–63, 64, 114,

145, 258

iteration and, 64–68, 74–79, 82, 83, 91

mathematical, 103

modules and, 252–253, 258

polymorphism and, 65–66, 79–82, 84, 88,

91, 114

Processing functions and, 219–220, 264, 278

sequences and, 64–68, 74–79, 82, 83, 91

statistical data and, 232

types and, 65–66, 79–82, 84, 88, 91, 114

Accented characters, 99–100

Adjectives, 37, 162, 249, 284–286, 287–288

Adventure (game), 99

Alice in Wonderland (Carroll), 158

Alice’s Adventures in the Whale (Richardson),

157–158, 295

Alpha channel. See Transparency or alpha

channel

Altice, Nathan, 326

Anaconda, 10, 16, 23, 22–24, 26–27, 27f

Animation

further explorations of, 273

simple, 267–271, 278

Apple, 13, 140. See also Mac OS X

App Store, 13, 140

Arguments

in bytebeat, 308

command-line, 97, 209–210

double() (custom Python function) and,

55–57, 59–62

to Processing functions, 216, 219–222, 265,

268, 271

to Python functions, 54–55, 56–57, 59–62,

64, 68–69, 72–74, 73f, 77, 78–82, 84, 86, 91,

101, 104–105, 107, 109–110, 112, 129–121,

139, 155, 170–173, 176, 198–199, 283, 298

to Python slices, 122–124

352	 Index

Arrays. See also Lists (Python)

in JavaScript, 36

in Processing, 216–218, 272

ASCII (American Standard Code for

Information Interchange), 23, 150

Atari, 17, 320–321, 325

Atom, 24, 148–151

Attributes

of Processing objects, 217

of Python objects, 131, 174, 182–183, 193,

255, 283, 287

background() (Processing function), 264,

267–270, 276

BASIC, 3, 323, 325, 326

Bayesian classifier, 250–253, 261

Bellamy, Edward, 322

Bergval, Caroline, 299

Berners-Lee, Tim, 8–9

Bitwise operators, 42, 310–312, 314

Blogs, 117, 249, 327

Boal, Agosto, 327

Bogost, Ian, 320–321, 326

Borges, Jorge Luis, 299

Bounded loop. See for loop

Bright, Geroge W., 324

Brown University, 285, 320

Browsers (Web), 10–11, 26–27, 28f, 32–35,

48–49, 95, 98, 315

Firefox, 11, 32, 33

Burroughs, William S., 296

Bytebeat, 307–314

Web-based players, 308–309

Bytecode, 25

C (programming language), 25, 113, 216, 308

Calculation

arithmetic expressions and, 39–48, 50, 63,

66, 67

computing and, 40–41, 103

double() (custom Python function) and,

56–57, 59

errors and, 43–48, 88

factorial and, 109–113

taxation and, 39, 65–71, 173

temperature conversion and, 100–103

Calculator, 39, 40–41, 43, 58, 66, 67, 207, 312

Cartesian coordinates, 220

Case sensitivity, 148–149, 155

Casting, 82, 89, 137, 180, 191, 201

Causality, 234–236

cd (change directory, GNU/Linux, Mac, and

Windows), 96–98

Cell-by-cell generator, 192

Celsius, Anders, 101

Celsius temperature scale, 100–104, 170, 236

Character classes, 148–149, 152, 155, 159, 164

Classes (in regular expressions). See Character

classes

Classification, 104–109, 241–261

Bayesian, 250–253, 261

images and, 259–260, 261

overfitting and, 248f, 257

sentiment and, 248–259

testing, 246–247, 250–251, 258–259

text and, 241–259, 260–261

training, 245–247, 249–251, 258–259

cmd (command line, Windows), 96

Collaboration, 15, 17, 41, 56, 177, 204, 317,

323, 326–327

Color, 168, 171–175, 178–180, 183–190, 193,

195–202, 205–207, 263, 267, 271

Colossal Cave (game). See Adventure (game)

Command line, 27–28, 61, 94–98, 147, 209,

274

Comments (in code), 59, 70, 96, 108, 173–174,

220–222, 275

Commodore 64, 326

Compilers, 9, 25, 30, 45–47, 323

Compton, Kate, 304

Conditional, the, 85–87, 91, 104, 106, 112–

114, 117, 139, 238, 244, 291, 312

if (Processing keyword) and, 238, 253, 271

if (Python keyword) and, 85–87, 91, 104,

106, 112–114, 139, 244, 291

Copyright, 13, 289

Index	 353

Correlation, 234–236

Counting words. See Word count

Creative Computing (magazine), 7

Cross-platform tools and approaches, 24–27,

34, 97, 148, 208, 308, 314

Crowther, Will, 99

CSS, 10, 32, 325

Culture

classification and, 241, 251

computation and, 1–5, 7–8, 9, 15, 40–41, 53,

112, 117, 120, 318, 325–326

measurement systems and, 100–101, 103

starter or introductory programs and, 117

temperature scales and, 100–101, 103

Cut Up, 296–299

“Cut-Up Method of Brion Gysin, The”

(Burroughs), 296

Cyrillic, 99

Danziger, Michael, 213

DBN (design by numbers), 177

Debugging, 76, 315

def (Python keyword), 54–55, 67–69, 71–72,

77–78, 85–87, 102–108, 111–113, 115

Desktop, 30, 33–34, 96–97, 148, 184, 290

Dictionaries (lexical resources), 24, 257,

288–292

dir (directory listing, Windows), 96–97

dir() (Python function), 174, 193

Directories, 27, 96–98

cd (change directory, GNU/Linux, Mac, and

Windows), 96–98

changing, 96–98

determining current, 96

dir (list directory contents, Windows),

96–97

ls (list directory contents, GNU/Linux and

Mac), 96

pwd (print working directory, GNU/Linux

and Max) and, 96

Distribution (software), 12–13

GNU/Linux, of, 14

Python, of (see Anaconda)

Distribution (statistics)

centers of, 226–228, 229

mean (arithmetic) of, 77–79, 214–226, 229,

238, 246–248

median of, 226–227, 229, 238

modes of, 227–228, 229, 238

spread of, 228–229

standard deviation of, 228–229

variance of, 228–229, 238, 246–248

DMX, 299

Double, Double. See double() (custom Python

function)

double() (custom Python function)

abstraction and, 82–84, 114

arguments to, 55–57, 59–62

calculation and, 56–57, 59

describing workings of, 59–62

interface of, 59–62, 63, 64

iteration and, 64, 82–83

lists and, 56–57, 61–63, 65, 86–84

polymorphism and, 84

program modification and, 63–64, 90

strings and, 84

Double letters, 124–128

draw() (Processing function), 267–270, 272,

275, 276, 278

Dreamwidth, 328

DRY (Don’t Repeat Yourself), 70–71, 83,

132–133

EDSAC (Electronic Delay Storage Automatic

Calculator), 41

Eich, Brendan, 11

Eliza (chatbot), 9, 274

elif (Python keyword), 106

ellipse() (Processing function), 265–266, 276

else (Python keyword), 87, 106, 112, 115,

145, 189, 244

Empty list, 57, 61, 82–83, 111–112, 114–115,

174

Engelbart, Douglas, 9, 321–323, 328

English, 24, 40–41, 128, 145, 174, 254, 256–

257, 285, 288–290, 316

354	 Index

Equality. See == (equality operator, Processing);

== (equality operator, Python)

Errors

AttributeError (Python), 131

IndexError (Python), 202

ModuleNotFoundError (Python), 29

mixing tabs and spaces, 24, 55–56

raising, 103–104, 113–114, 117

runtime, 113

semantic, 46–48

SyntaxError (Python), 43–47, 50

TypeError (Python), 61, 81, 201

UnicodeDecodeError (Python), 154

ValueError (Python), 104, 113–114

ZeroDivisionError (Python), 88

Exploration versus exploitation, 4–6

Expressions

arithmetic, 39–48, 50, 63, 66, 67

bytebeat and, 309–313

regular (see Regular expressions)

Facebook, 328

Factorial, 109–113, 118

Fahrenheit, Daniel Gabriel, 103

Fahrenheit temperature scale, 100–104, 170,

172, 236

Feature engineering, 249, 261

Fibonacci sequence, 8

File extensions, 33, 94–95

fill() (Processing function), 265, 271,

276

Find dialog, 148, 154

Firefox, 11, 32, 33

Flash, 325

Floating point numbers, 84, 91, 168, 178, 202,

207, 216, 272–273, 291

FLOSS (Free/Libre/Open-Source Software) See

Free software

Folders. See Directories

for loop, 76–79, 83, 111–112, 179–180, 217,

265–266, 275–276. See also Iteration

for (Processing keyword) and, 217, 220, 266,

275–276

for (Python keyword) and, 76–79, 83, 111–

112, 179–180

Formal validity, 46–49

frameRate() (Processing function), 267, 269

Frasca, Gonzalo, 327

Freedman, David A., 237

Free projects, 2–3, 15, 16, 17, 20–22

Free software, 11–15, 18, 21, 316–317, 328

concept of, 11–15, 316–317

FSF four freedoms and, 12–13

GNU Manifesto and, 12

particular software that is, 14, 24, 30, 32,

167, 208, 214, 292, 308, 316

Stallman, Richard, and, 12

Free Software Foundation (FSF), 12–13

Freeware, 11, 24

French, 41

Fry, Ben, 237, 321

Functions. See also specific function

abstraction and, 65, 67–71, 86–87, 90, 142,

160, 182, 199, 260–261

arguments to, 54–55, 56–57, 59–62, 64,

68–69, 72–74, 73f, 77, 78–82, 84, 86, 91

categorization by, 104–108

conditional in, 85–87, 104–108, 112–113,

244, 290–291

conversion and, 100–109

defining, 54–55, 64, 67–69, 71, 72, 77–78,

86–87, 102, 137, 216–218

factorial, 109–113, 118

polymorphic, 84

return values and, 56–57, 61, 67–68, 77, 80,

87, 88–89, 125, 123, 183

scope and, 71–74, 73f, 91

starter or introductory, 53–64, 82–84, 93–118

statistics and, 77–79, 214–229, 238, 246–248

temperature conversion, 100–104

Georgia Tech, 320

German, 316

Getting Started with Processing (Reas and Fry),

237

Glimpse, 167, 204, 207–208, 212, 225

Index	 355

GNU (project), 12–14

Emacs, 24

FSF (Free Software Foundation) and, 12–13

GNU Manifesto, 12

Stallman, Richard, and, 12

GNU/Linux (operating system)

as an alternative to Mac OS X or Windows,

94

Debian distribution of, 14

file extensions and, 33

Processing and, 30

Python and, 10, 25–26

terminal or command line on, 28, 96–98,

162

text editors for, 24

TextBlob installation on, 28–29

Ubuntu distribution of, 14

Goldberg, Adele, 320

Google, 8, 25, 259

Grammars, 300–304

Grayscale, 177, 184

GUI (graphical user interface), 24, 27–28, 95,

98, 172, 209, 252

Gysin, Brion, 296

Harrell, D. Fox, 326

Hartman, Charles O., 8

Hello Sailor, 98–99

Hello World, 52, 79–78, 93–94, 98–100, 114

help() (Python function), 173–174, 193

Histograms, 230

Hopkins, Gerald Manley, 296–299

Hopper, Grace Murray, 9

Howe, Daniel C., 320

HTML (Hypertext Markup Language), 10,

32–34, 36–37, 38, 48–49, 230–231, 315,

323, 325

validity and, 48–49

IBM, 41, 135

IDE (integrated development environment),

32, 98, 214–216, 274, 315, 323

if (Processing keyword), 238, 253, 271

if (Python keyword), 85–87, 91, 104, 106,

112–114, 139, 244, 291

ImageMagick, 208–210

Images

analysis of, 167, 177–183

animation and, 263–267

attributes and, 182–183

blurring, 195–205

cell-by-cell generator and, 192

classification of, 259–260, 261

color and, 168, 171–175, 178–180, 183–

190, 193, 195–202, 205–207, 263, 267,

271

command line and, 208–210

darkening and, 188

flipping, 189–192, 193, 201, 208, 222–223

floating point numbers and, 178, 201–202,

207, 272–273

generalization and, 181–184

generating, 21, 170–177, 192, 263–267

Glimpse and, 167, 204, 207–208, 212, 225

increasing contrast and, 188–189

integers and, 178, 191, 201–202, 207, 266

inverting, 206

lightening and, 185–188

loading or opening, 184–185

nested iteration and, 178f, 179–181, 193

Photoshop and, 167, 177, 185, 189, 204,

207, 208, 211–212, 225, 317

pixel-by-pixel approaches to, 167–193

PNG format and, 177, 185–188, 211

Processing and, 218–225, 263–266

Python and, 167–212, 259

representations of, 167

transparency or alpha channel and, 168,

175, 184–188, 201–202, 275

tuples and, 168–170, 172, 175, 185, 186,

188, 193

import (Python keyword), 29, 155, 171, 179,

184, 192, 196, 211, 250, 252, 254–255,

292–294, 298, 300

Indentation, 24, 54–56, 64, 67–68, 76–77, 87,

111, 216–217

356	 Index

Indexing (a character or other element), 110,

119–123, 121f, 126–127, 141–142, 144f,

146, 202

int() (Python function), 136, 191, 201–202

Integers

arithmetic and, 58–59, 88, 136

casting to, 191, 201–202

double() (custom Python function) and,

56

factorials and, 111–112

images and, 178, 191, 201–202, 207, 266

indexing and, 121f, 121–124, 141, 142, 144f,

169, 202

length of, 81, 120

Processing and, 271

Python and, 79, 81

return values and, 78

rounding to, 202

truncating to, 191, 201–202

type int in Processing and, 217

type int in Python and, 79, 81

Intentional programs, 47–49, 50–51, 113

Interaction

interpreters and, 25, 274

Processing and, 275–279

Python and, 274–275

text editors and, 274

Interface (command-line). See Command line

Interface (graphical user). See GUI

Interfaces (to functions and methods), 59–64,

114, 145, 219

application programming interface (API),

209

double() (custom Python function) and,

59–64

Interpreter, 25–26, 30, 32, 46, 95, 97–98, 214.

See also Jupyter Notebook

iPython Notebook (earlier name for Jupyter

Notebook), 44

Iteration, 74–79, 82

abstraction and, 74–79

factorial and, 109–112

images and, 178f, 179–182, 185–190, 198–

203, 220, 265, 277

indentation (in Python) and, 55, 76–77

interaction and, 274–275

loops (of paper tape) and, 75

nested, 178f, 179–181, 193

palindromes and, 140–143, 160

recursion and, 112–113, 114–115, 118,

143–145

through strings, 125–128

unbounded, 116, 275

Java, 10, 30, 278

Joining (lists), 131–133, 156–157

Jupyter Notebook

calculation in, 39–46, 40f, 50

error messages in, 44

images and, 171

proper use of, 49–50, 51

setting up, 25–27, 28f

Kay, Alan, 320

Kenner, Hugh, 8

keyPressed() (Processing function), 275–276

Key presses, 275–278

Keywords, 54, 64, 68, 76, 87, 106, 139

Kincaid, Jamaica, 299

Kirschenbaum, Matthew G., 320, 326

Landor, Walter Savage, 15

Learning Processing: A Beginner’s Guide to

Programming Images, Animation, and

Interaction (Shiffman), 237

Learn to Program (Pine), 3

Leaves of Grass (Whitman), 151–153, 161, 162,

242–245

Lemma names, 293–295

len() (Python function), 77–78, 80–82, 115,

119–120, 126–129, 144, 155–159, 173, 217,

243, 283, 287, 288, 291

length (Processing attribute, of array), 215,

217, 220, 222–224

Index	 357

Liao, Yuen-Kuang Cliff, 324

Licenses, 11–13, 308, 315–316

Linux. See GNU/Linux

Lisp, 98, 113

Lists (Python), 56–57, 61–62, 75–79, 80, 80–84

arrays and, 36, 216–218, 272

attributes of, 174

double() (custom Python function) and,

55–57, 59–62

empty (see Empty list)

indexing, 110

joining, 131–133, 156–157

sequences and, 76, 80–81

sorting, 133–134, 137

splitting strings into, 129–130, 158, 250, 290

LiveJournal, 328

Logo, 320

Looking Backward: 2000–1887 (Bellamy), 322

Looping and loops. See Iteration

Lowercase letters, 29, 86, 94–95, 125, 139,

144–145, 148–149, 159

lower() (Python method, of str), 125, 139,

141, 143–145

ls (list directory contents, GNU/Linux and

Mac), 96

Machine learning, 4, 241–261

Mac OS X, 14, 24, 26

keyboard differences on, 24, 29, 33, 39

Processing installation on, 29

Terminal or command line on, 28, 96–98,

162

TextEdit (word processor) and, 24, 32

Maeda, John, 177

Mandarin Chinese, 316

Manovich, Lev, 326

Massachusetts Institute of Technology (MIT),

320

Mateas, Michael, 321, 323, 326

Mathematics. See also Calculation; Statistics

arithmetic expressions, 39–48, 50, 63, 66, 67

division by zero, 88

factorial and, 109–113, 118

fear of, 6

joke about, 310

notation and, 44

saturation arithmetic, 187, 207

Mean (arithmetic), 77–79, 214–226, 229, 238,

246–248

Median, 226–227, 229, 238

Melville, Herman. See Moby Dick (Melville)

Microsoft. See Windows

Mobile phones, 14, 49

Moby Dick (Melville), 35, 158, 245, 247,

287–288

Mode, 227–228, 229, 238

MOOs, 95

mouseDragged() (Processing function), 277

Mud cards, 334

MUDs, 95

National Novel Generation Month

(NaNoGenMo), 157–158

Natural language processing, 28, 241–259

Natural Language Toolkit (NLTK), 250–254,

258, 284, 304

Nature of Code, The: Simulating Natural Systems

with Processing (Shiffman), 237

Negative numbers, 57, 88, 113, 124, 199

arguments to slices and, 124, 141–142

coordinates and, 202

indexes and, 124, 141–142

Newlines, 130–133, 150, 152–153, 163–164,

218, 242, 290

New School, 320

Nintendo Entertainment Systems, 325

Nonword characters, 160, 164–165

Nouns, 284–286, 293–295

Null string, 105, 119, 122–123, 130, 134, 303

NumPy (Numeric Python), 237

Numbers

negative (see Negative numbers)

with decimal points (see Floating point

numbers)

without decimal points (see Integers)

zero (see Zero)

358	 Index

NYU Interactive Telecommunications Program

(ITP), 321

Objects

attributes, including methods, of, 42–43,

129, 174, 179, 182, 193, 206, 207

instantiating or creating, 171–173, 192–193

Official Scrabble Player’s Dictionary, The, 289

ONLine System (NLS), 9

Open source, 12. See also Free software

Operationalization, 323

Operators

arithmetic, 39–42, 77, 80, 82

bitwise, 42, 310–312, 314

equality (see == (equality operator,

Processing); == (equality operator, Python))

Oxford English Dictionary, The, 292

Palindromes

concept of, 136

iteration and, 140–143, 144f

recursion and, 143–146, 144f

regular expressions and, 159–160

verifying by reversing, 137–140

Paolucci, Denise, 328

Papert, Seymour, 320

Parrish, Allison, 304, 321

Parsing, 257–258, 281

Part-of-speech tagging, 281, 284–286

PDF, 289

PEP 8 (Python style guide), 41, 56

Penn Treebank project, 285

Photoshop, 167, 177, 185, 189, 204, 207, 208,

211–212, 225, 317

PHP, 325

“Pied Beauty” (Hopkins), 296–299

Python Imaging Library (PIL), 170–172, 174–

175, 176–177, 179, 192, 196, 202, 208, 212,

264

Pine, Chris, 3

Pixels, 167–169, 178f, 203f. See also Color;

Images

getting or reading a pixel (in Python), 175

setting or putting a pixel (in Python),

175–176

visiting every pixel, 178f, 179, 205–206

Plain text files, 23–24, 32, 151, 245

Poe, Edgar Allan, 157

Poetry, 8, 157, 162, 165, 241–245, 289,

296–299

prose and, 149, 151, 157, 162, 241–245

Polarity, 249, 252, 256–257

Polymorphism

abstraction and, 65–66, 79–82, 84, 88, 91,

114

double() (custom Python function) and, 84

types and, 65–66, 79–82, 84, 88, 91

Positive numbers, 58, 99, 183

Postel, Jonathan Bruce, 48–49

Prepositions, 249, 285

Pride and Prejudice (Austen), 148–159, 161, 163,

242–243, 245, 284–286, 287–288

Princeton University, 292

print() (Python function), 71, 75–76, 94,

102, 108–109, 111, 116, 125–126, 132–133,

142, 169, 215, 274, 290, 297–298, 303

println() (Processing function), 215, 218–

220, 222–224, 266

Probability, 213, 227, 231–233, 239, 250, 252,

303

Processing

background() (Processing function), 264,

267–270, 276

draw() (Processing function), 267–270, 272,

275, 276, 278

ellipse() (Processing function), 265–266,

276

fill() (Processing function), 265, 271, 276

for (Processing keyword), 217, 220, 222–

224, 275–276

frameRate() (Processing function), 267, 269

function definition in, 215–217

guides to, 237

if (Processing keyword), 271, 276

keyPressed() (Processing function),

275–276

Index	 359

mouseDragged() (Processing function), 277

println() (Processing function), 215, 218–

220, 222–224, 266

random() (Processing function), 275–277

rect() (Processing function), 219–224,

267–270

reference pages for, 16

return (Processing keyword), 215–218

setup of, 29–30

setup() (Processing function), 215, 218–224,

264–265, 267–269, 272, 275–276

size() (Processing function), 219–224,

267–268, 275

stroke() (Processing function), 276

translate() (Processing function), 276

Processing: A Programming Handbook for Visual

Designers and Artists (Reas and Fry), 237

Programming

benefits of, 319–319

breakthroughs in, 8–9

collaboration and, 15–17, 41, 56, 177, 204,

317, 323, 326–327

culture and, 1–5, 7–8, 9, 15, 40–41, 53, 112,

117, 120, 318, 325–326

as editing text, 38

exploration and, 1–5

as inquiry, 1, 3–10, 17, 22, 117, 236, 319,

325–326, 332

modification of code and, 31–38, 63, 90,

115–116

as a practice, 18, 22, 335

starter or introductory programs and, 53–64,

82–84, 93–118

style and, 41, 56, 67

Program or Be Programmed (Rushkoff), 9, 325,

327–328

Programs-in-progress, 47, 50, 59, 102

Project Gutenberg, 148–151, 156, 230–230,

245–246, 282, 286, 287, 289, 295–296

Pronouns, 151, 162

Prose, 128

poetry and, 149, 151, 157, 162, 241–245

PROSE (system), 8

pwd (print working directory, GNU/Linux and

Mac), 96

python (command), 97–98

Python

Anaconda and, 10, 16, 23, 22–24, 26–27, 27f

def (Python keyword), 54–55, 67–69, 71–72,

77–78, 85–87, 102–108, 111–113, 115

dir() (Python function), 174, 193

double() (see double() (custom Python

function))

elif (Python keyword), 106

else (Python keyword), 87, 106, 112, 115,

145, 189, 244

help() (Python function), 173–174, 193

import (Python keyword), 29, 155, 171, 179,

184, 192, 196, 211, 250, 252, 254–255,

292–294, 298, 300

indentation and, 24, 54–56, 64, 67–68,

76–77, 87, 111, 216

int() (Python function), 136, 191, 201–202

len() (Python function), 77–78, 80–82, 115,

119–120, 126–129, 144, 155–159, 173, 217,

243, 283, 287, 288, 291

lower() (Python method, of str), 125, 139,

141, 143–145

print() (Python function), 71, 75–76, 94,

102, 108–109, 111, 116, 125–126, 132–133,

142, 169, 215, 274, 290, 297–298, 303

range() (Python generator), 110–111, 126–

128, 169, 176, 179–183, 198, 201–203

regular expressions and, 154–161

return (Python keyword), 54, 67–68, 72, 87

reverse() (Python method, of list), 137–140

round() (Python function), 202

sort() (Python method, of list), 134, 137

sorted() (Python function), 133, 283

type() (Python function), 79–80, 202

Quotation marks

straight double, 120

straight single, 34–35, 85, 119, 134–142

strings and, 34–35, 85, 119, 134–142, 144, 155

typographical, 150–153, 230

360	 Index

Raja, Tasneem, 9

Ramsay, Stephen, 321, 329

random() (Processing function), 275–277

range() (Python generator), 110–111, 126–

128, 169, 176, 179–183, 198, 201–203

“Raven, The” (Poe), 157

Reas, Casey, 237, 321

rect() (Processing function), 219–224,

267–270

Recursion, 112–113, 114–115, 118, 143–145

double() (custom Python function) and,

114–115

factorial and, 112–113

grammars and, 301–303

palindromes and, 143–145

Reduplications, 136, 289–291

Refactoring, 87, 132–134, 139–140, 143, 165

Regular expressions, 147–166, 295–296, 297–

298, 300

return (Processing keyword), 215–218

return (Python keyword), 54, 67–68, 72, 87

Return values, 56–57, 61, 67–68, 77, 80, 87,

88–89, 125, 123, 183

reverse() (Python method, of list), 137–

140

RFCs (Requests for Comments), 48–49

Richardson, Leonard, 157–158

RISD, 320

Roget’s Thesaurus, 292

round() (Python function), 202

Ruby, 3, 98

Rushkoff, Douglas, 9, 325, 327–328

Russian, 99

Saturation arithmetic, 187, 207

SciPy (Scientific Python), 237

Scope, 71–74, 73f, 91

Semantic error, 46–48, 113

Semicolons, 216–218

Sentences, 287, 300, 302, 304–305

Sentences (Hartman and Kenner), 8

Sentiment analysis, 248–258, 261

polarity and, 248–249, 252, 256–257

Sequences (in Python), 74–82, 84, 91, 140,

133–134, 137, 146, 170, 172. See also

Iteration; Lists (Python); Strings; Tuples

abstraction and, 74–82

double() (custom Python function) and,

55–57, 59–62

setup() (Processing function), 215, 218–224,

264–265, 267–269, 272, 275–276

Shiffman, Daniel, 237

Sim City (game), 327

“Sims of the Oppressed” (Frasca), 327

size (Python attribute, of Image), 182, 190,

201, 203

size() (Processing function), 219–224, 267–

268, 275

Slicing (in Python), 119, 121–127, 140, 143–

144, 146, 154–157, 291

displaying the beginning of a long sequence

and, 154–157, 288

lists and, 155–156, 159

reversing strings and, 140

strings and, 119, 121–127, 140, 143–144,

146, 291

tuples and, 187–188

Smalltalk, 320

Smart, Christopher, 299

Smith, Mark, 328

sort() (Python method, of list), 134, 137

sorted() (Python function), 133, 283

Sound, 307–314

audio devices and, 308

bitwise operators and, 310–312, 314

bytebeat and, 307–314

Source code, 11–13, 25, 34

Spanish, 6, 99, 316

Splitting strings, 129–130, 158, 250, 290

SSEC (Selective Sequence Electronic

Calculator), 41

Stallman, Richard, 12

Standard deviation, 228–229

Stanford Artificial Intelligence Lab (SAIL), 98

Starter or introductory programs, 53–64,

82–84, 93–118

Index	 361

Start Menu, 30, 96

Statistical Models: Theory and Practice

(Freedman), 237

Statistics, 213–239

causality and, 234–236

correlation and, 234–236

descriptive, 225

histograms and, 230

inferential, 225–226

mean (arithmetic) and, 77–79, 214–226, 229,

238, 246–248

median and, 226–227, 229, 238

mode and, 227–228, 229, 238

standard deviation and, 228–229

variance and, 228–229, 238, 246–248

probability and, 213, 227, 231–233, 239,

250, 252, 303 (see also Distribution

[statistics])

Strings, 34–36, 58–59, 65, 79–91, 98, 104–108,

119–146, 156–159, 244, 291

double() (custom Python function) and, 84

indexing and, 119–123, 121f, 126–127, 141–

142, 144f, 146

initials and, 135

JavaScript and, 34–36

joining lists into, 131–133, 156–157

len() (Python function) and, 80, 81, 109,

119–120, 126–129, 144, 156–159, 244, 291

lists and, 89, 90, 129, 130–131, 137–139,

146, 242–243, 296

null (see Null string)

palindromes and, 137–146, 144f

quotation marks and, 34–35, 85, 119, 134–

142, 144, 155

raw, 155, 163

slicing, 119, 121–127, 140, 143–144, 146,

291

sorting, 133, 134, 137, 283

splitting, 129–130, 158, 250, 290

reduplications and, 136, 289–291

stroke() (Processing function), 276

Style and style guides, 41, 56, 67

Substrings, 121

Synonyms, 292–293

Syntax (of computer programs)

arithmetic expressions and, 43–47, 50

differences in, 218

errors and, 43–47, 50, 88

invalid, 43–47, 50, 88

semantics and, 46–48

Syntax (of English and natural languages),

284–285

Penn Treebank project and, 285

Tab key, 24, 54

Tablets, 14, 49

Tale of Two Cities, A (Dickens), 282

Temperature conversion, 100–104

Text. See also Strings; TextBlob

accented characters in, 99–100

adjectives in, 37, 162, 249, 284–286,

287–288

analysis of, 129–130, 147–159, 241–261,

281–292

classification of, 241–259, 260–261

dictionaries and, 24, 257, 288–292

double letters in, 124–128

Find dialog and, 148, 154

generation of, 32–37, 115, 192, 233–234,

274, 277, 303–305

grammars and, 300–304

machine learning and, 241–261

natural language processing and, 241–261,

281–305

Natural Language Tooklkit (NLTK) and, 250–

254, 258, 284, 304

nouns in, 284–286, 293–295

parsing of, 257–258, 281

part-of-speech tagging of, 281, 284–286

plain, 23–24, 32, 151, 245

polarity of, 249, 252, 256–257

Project Gutenberg and, 148–151, 156,

230–230, 245–246, 282, 286, 287, 289,

295–296

pronouns in, 151, 162

Python and, 147–159, 161–166, 281–205

362	 Index

quotation marks in, 150–153, 230

regular expressions and, 147–166, 295–296,

297–298, 300

sentences and, 287, 300, 302, 304–305

sentiment analysis and, 248–258, 261

tokens in, 136, 254, 256, 282–284, 286f, 289,

295

Windows and, 154, 287–288

word count and, 129–130, 158–159, 281–

282, 304

word processors and, 23–24, 32, 147, 279,

325–326

TextBlob, 28–29, 282–294, 304–205, 316

sentiment analysis and, 248–258, 261

setup of, 23, 28–29

WordNet and, 292–294

TextEdit (word processor), 24, 32

Text editors, 11, 14, 23–24, 30, 32–36, 55, 94,

98, 100, 115, 147–154

regular expressions and, 147–154

setup of, 23–24

Text generators, 32–37, 115, 192, 233–234,

274, 277, 303–305

“Theatre of the Oppressed” (Boal), 327

Thesaurus, 292

Tokens (linguistic), 136, 254, 256, 282–284,

286f, 289, 295

Tracery (JavaScript library), 304

translate() (Processing function), 276

Transparency or alpha channel, 168, 175,

184–188, 201–202, 275

Tron (film), 99

Truncation, 201–202

Tuples, 168–176, 182, 186, 188, 193, 196–199,

253, 285

immutability and, 168–169

Twitter, 328

type() (Python function), 79–80, 202

Types, 65–66, 79–82, 84, 88, 91, 114, 202

abstraction and, 65–66, 79–82, 84, 88, 91,

114

division and, 88

polymorphism and, 65–66, 79–82, 84, 88, 91

type() (Python function) and, 79–80, 202

Ubuntu, 14

Uncommenting, 220

Unicode, 23, 99, 154

University of Pennsylvania (Penn), 285

Uppercase letters, 29, 123, 149, 155, 159

User name, 94

Utopia, 322, 327

Valid programs, 46–49

van Rossum, Guido, 10, 56

Variance, 228–229, 238, 246–248

Vee, Annette, 9

Vernon, Amy, 328

Verse. See Poetry

vi, 24

Videoconferencing, 9

Video games, 14, 323, 325–326

Visualization, 213–239

persuasion/exploration differences and,

213–214

principled, 239

Processing and, 213–238

statistics and, 213–239

Visualizing Data: Exploring and Explaining Data

with the Processing Environment (Fry), 237

Wardrip-Fruin, Noah, 323

WASD-style navigation, 277

Wikipedia, 292

Windows (operating system), 24, 28–29, 33,

94–98, 148, 154, 253–254, 287–288

Anaconda Prompt and, 28–29

character encoding and, 154, 287–288

UnicodeDecodeError and, 154, 287–288

Woods, Don, 99

Word characters, 160

Word count, 129–130, 158–159, 281–282,

304

WordNet, 292–295, 305, 316–317

Word processors, 23–24, 32, 147, 279, 325–326

Text (cont.)

Index	 363

World Wide Web, 8–9, 10–11, 26, 32–34,

38, 48–49, 184, 278, 289, 315. See also

Browsers (Web); HTML (Hypertext Markup

Language)

Zero, 57, 61, 78, 88, 105–106

absolute (see Absolute zero)

dollar price, 13–14 (see also Freeware)

character string (see Null string)

element list (see Empty list)

as an index or offset, 121f, 121–124, 141,

142, 144f, 169, 202

to initialize a counter, 78, 217

leading, 66

or more, 55, 150, 152, 159, 164

Zork (game), 99

	[Contents]
	[List of Figures]
	[Acknowledgments]
	[1] Introduction
	[1.1]
	[1.2] Exploration versus Exploitation
	[1.3] A Justification for Learning to Program?
	[1.4] Creative Computing and Programming as Inquiry
	[1.5] Programming Breakthroughs
	[1.6] Programming Languages Used in This Book
	[1.7] Free Software and No-Cost Software
	[1.8] Programming and Exploring Together
	[1.9] Program as You Go, Testing Yourself
	[1.10] Four Methods to Best Learn with This Book
	[1.11] Essential Concepts

	[2] Installation and Setup
	[2.1]
	[2.2] Install a Text Editor
	[2.3] Install Anaconda, Our Python 3 Distribution
	[2.4] Find the Command Line
	[2.5] Install a Python Library: TextBlob
	[2.6] Install Processing
	[2.7] Essential Concepts

	[3] Modifying a Program
	[3.1]
	[3.2] Appropriating a Page
	[3.3] Quick and Easy Modifications
	[3.4] Share and Discuss Your Projects
	[3.5] Essential Concepts

	[4] Calculating and Using Jupyter Notebook
	[4.1]
	[4.2] Calculations
	[4.3] Encountering an Error
	[4.4] Syntax and Semantics
	[4.5] A Curious Counterexample of the Valid and Intentional
	[4.6] Using Jupyter Notebook
	[4.7] Essential Concepts

	[5] Double, Double
	[5.1]
	[5.2] Type In the Function
	[5.3] Try Out the Function
	[5.4] Describe the Function
	[5.5] Essential Concepts

	[6] Programming Fundamentals
	[6.1]
	[6.2] A Function Abstracts a Bunch of Code
	[6.3] Functions Have Scope
	[6.4] Iteration (Looping) Abstracts along Sequences
	[6.5] Polymorphism Abstracts across Types
	[6.6] Revisiting “Double, Double”
	[6.7] Testing Equality, True and False
	[6.8] The Conditional, if
	[6.9] Division, a Special Error, and Types
	[6.10] Essential Concepts

	[7] Standard Starting Points
	[7.1]
	[7.2] Hello World
	[7.3] Temperature Conversion
	[7.4] Lowering Temperature and Raising Errors
	[7.5] Converting a Number to Its Sign
	[7.6] The Factorial
	[7.7] “Double, Double” Again
	[7.8] Essential Concepts

	[8] Text I: Strings and Their Slices
	[8.1]
	[8.2] Strings, Indexing, Slicing
	[8.3] Selecting a Slice
	[8.4] Counting Double Letters
	[8.5] Strings and Their Length
	[8.6] Splitting a Text into Words: First Attempt
	[8.7] Working across Strings: Joining, Sorting
	[8.8] Each Word without Joining
	[8.9] Verifying Palindromes by Reversing
	[8.10] Verifying Palindromes with Iteration and Recursion
	[8.11] Essential Concepts

	[9] Text II: Regular Expressions
	[9.1]
	[9.2] Introducing Regular Expressions
	[9.3] Counting Quotations in a Long Document
	[9.4] Finding the Percentage of Quoted Text
	[9.5] Counting Words with Regular Expressions
	[9.6] Verifying Palindromes—This Time, with Feeling
	[9.7] Elements of Regular Expressions
	[9.8] Essential Concepts

	[10] Image I: Pixel by Pixel
	[10.1]
	[10.2] A New Data Type: Tuples
	[10.3] Generating Very Simple Images
	[10.4] Pixel-by-Pixel Image Analysis and Manipulation
	[10.5] Generalizing to Images of Any Size
	[10.6] Loading an Image
	[10.7] Lightening and Darkening an Image
	[10.8] Increasing the Contrast of an Image
	[10.9] Flipping an Image
	[10.10] Essential Concepts

	[11] Image II: Pixels and Neighbors
	[11.1]
	[11.2] Blurring an Image
	[11.3] Visiting Every Pixel
	[11.4] Inverting Images
	[11.5] Practical Python and ImageMagick Manipulations
	[11.6] Manipulating Many Images
	[11.7] Essential Concepts

	[12] Statistics, Probability, and Visualization
	[12.1]
	[12.2] The Mean in Processing
	[12.3] A First Visualization in Processing
	[12.4] Statistics, Descriptive and Inferential
	[12.5] The Centers and Spread of a Distribution
	[12.6] The Meaning of the Mean and Other Averages
	[12.7] Gathering and Preparing Data
	[12.8] Probability and Generating Numbers
	[12.9] Correlations and Causality
	[12.10] More with Statistics, Visualization, and Processing
	[12.11] Essential Concepts

	[13] Classification
	[13.1]
	[13.2] Verse/Prose Text Classification
	[13.3] A Miniature Corpus for Training and Testing
	[13.4] Building Up the Classification Concept
	[13.5] Text Classification and Sentiment Analysis
	[13.6] Training on Positive Words and Negative Words
	[13.7] A Thought Experiment about Sentiment and Word Order
	[13.8] Using the Included Sentiment System
	[13.9] Approaches to Text Classification
	[13.10] Trivial Image Classification
	[13.12] Essential Concepts

	[14] Image III: Visual Design and Interactivity
	[14.1]
	[14.2] Drawing Lines and Shapes on a Sketch
	[14.3] Updating a Sketch Frame by Frame
	[14.4] Changing Intensity
	[14.5] Exploring Animation Further
	[14.6] Interactive Programs
	[14.7] Key Presses in Processing
	[14.8] Essential Concepts

	[15] Text III: Advanced Text Processing
	[15.1]
	[15.2] Words and Sentences
	[15.3] Adjective Counting with Part-of-Speech Tagging
	[15.4] Sentence Counting with a Tokenizer
	[15.5] Comparing the Number of Adjectives
	[15.6] Word Lists and Beyond
	[15.7] WordNet
	[15.8] Automated Cut­Ups
	[15.9] Simple Grammars for Text Generation
	[15.10] Essential Concepts

	[16] Sound, Bytes, and Bits
	[16.1]
	[16.2] Introducing Bytebeat
	[16.3] Bytebeat from Zero
	[16.4] Exploring Bytebeat, Bit by Bit
	[16.5] Further Exploration of Sound
	[16.6] Essential Concepts

	[17] Onward
	[17.1]

	[Appendix A] Why Program?
	[A.1]
	[A.2] How People Benefit from Learning to Program
	[A.3] Cognitively: Programming Helps Us Think
	[A.4] Culturally: Programming Gives Insight into Cultural Systems
	[A.5] Socially: Computation Can Help to Build a Better World
	[A.6] Programming Is Creative and Fun

	[Appendix B] Contexts for Learning
	[B.1]
	[B.2] Semester-Long (Fourteen­Week) Course
	[B.3] Quarter­Long (Ten-Week) Course
	[B.4] One-Day Workshop
	[B.5] Individual and Informal Learning
	[B.6] A Final Suggestion for Everyone

	[Glossary]
	[References]
	[Index]

